Pitfalls of Learning Mathematics

Illustrated by referencing the PBS video on NOVA: 'Zero to Infinity'

When looking at that cube, you most likely see the outside of a cube, where the corner of the orange, green, and white sides are near you. However some people are able to push that point into the paper so that you see the inside of a room where the orange side looks like the ceiling of the room. Some people have trouble with this optical illusion in a way analogous to people understanding mathematics.

New title for video: Not applying what we learned

Pattern Recognition, Memorization, and how We think

Math has been taught in a way that makes it difficult to learn and understand. People are able to retain large amount of information by memorizing a selected portion and then recreate the rest by deductive reasoning. We cannot memorize all of possible ways of adding numbers, so we memorize a selected few and use an algorithm to derive the rest. Given a series of numbers such as 123 , we can produce as many as we choose if we can see the pattern: 1234567123581317123571113. Thus, given a rule or algorithm we can determine that we have a counting sequence, a fibonacci series, or a seqential list of prime numbers.

Understanding why something works-the rule--, we can remember the rule more easily and then have a way of checking what we have done. Thus, when we add a negative, number, it is the same as adding the positive number. The defintion of a negative number is $-3+3=0$, Since subtraction is inverse addition, $3=0-3$. The rule now becomes obvious. So, why are we not given a useful defintion of negative number.

Secondly, we teach misinformation. We define zero as being nothing and give cherry picked problems to support the speculation. $3 X 0=0$ is nothing makes sense here, yet $3^{\wedge} 0=1$ does not make sense if we think of zeo as nothing. Is 1 plus $1=2$ or 1 . If we have one apple and someone gives us another, we have two apples. But, if we talk about herds of cattle, we have one herd (just larger).

Addition

Addition is a counting process, but it would take to much effort to add by counting. However, there are a few simple obsrvations.

Adding
0 does not change the answer
1 gives us the next number for large numbers, depends upon naming convention
2 skip count
3 memorize 3 added to 467 and think of 3 as 5-2
4 memorize 4 added to 467 and think of 4 as 5-1
5 memorize 5 added to 5
6 think of 6 as $5+1$ and use commutative and associative properties
7 think of 7 as $5+2$ and use commutative and associative properties
8 add 10 and count back 2 (adding 10 for single digit, place concatenate 1 before number
9 add 10 and count back 1
In summary:
We practice counting forward and backward from 0 to 19
We practice skip counting forward and backward from 0 to 18 and 1 to 19.
We practice using the associative and commutative properties.
We memorize $1+9,2+8,3+7,4+6$, and $5+5$

Multiplication

Multiplication is an addition process, but it would take to much effort to perform all those additions.

$$
3 \times 2=\widehat{2+2+2} \quad 3 \times 2=\widehat{0+2+2+2}
$$

However, there are a few simple obsrvations.
Multiplying by:
0 always 0
1 same number
2 adding number to itself
3 memorize $3 \times 33 \times 73 \times 8$
4 multiply by 2 and then result by 2
5 even: half number concatenate to 0 odd: add 5 to previous even
6 even: half number concatenate number odd: add 6 to previous even
7 memorize $7 \times 67 \times 77 \times 8$
8 memorize $8 x 8$
9 subtract 1 from number for tens and number from 10 for units 12345
Summary
0 and 1 obvious
2 and 4 double and doulble double
5 and 6 even half followed bu0 or number
9 subtract 1 from number for tens and number from 10 for units
Memorize 3x3 3x7 3x8 7x6 7x7 7x8 8x8

Rationaling that zero is nothing

Cherry Picking:

23.1 before: 023.1 after 023.10 value not changed

OOPS! Bigger 230.1 smaller 23.01
More cherry picking:
23203 place holder huh?
2131 is a place holder

Pattern recognition:

\quad One way	Another way
$3 \times 5=5+5+5$	$3 \times 5=0+5+5+5$
$2 \times 5=5+5$	$2 \times 5=0+5+5$
$1 \times 5=5$	$1 \times 5=0+5$
$0 \times 5=$ what's here	$0 \times 5=0$

Dropping +5 but on last step 5 Always dropping +5
In the first way we had to guess that $0 \times 5=0$ because of believing zero to be nothing, but we discovered a new defintion for mutiplication.

A new definition for multiplication

Skip jumping illustration (manipulative)

Zero is nothing mentality (incorrect manipulative)
$3 \times 2=2+2+2$

We are counting the numbers
Perspection is different; could be the difference between understanding and not understanding math.

A Pit fall

$5^{\wedge} 3=5 \times 5 \times 5$	$5^{\wedge} 3=1 \times 5 \times 5 \times 5$
$5^{\wedge} 2=5 \times 5$	$5^{\wedge} 2=1 \times 5 \times 5$
$5^{\wedge} 1=5$	$5^{\wedge} 1=1 \times 5$
$5^{\wedge} 0=?$	$5^{\wedge} 0=1$ correct but we need a proof

Note that we have been using a backward count to utilized pattern recognition

Is zero the middle of the number line

Every positive number has a matching negative number. By symmetry zero must be the center of the number line.

Any number can be the center, because for every number to the left, there is a number to the right.

If we have to choose, then we will use the symmetry argument for selecting zero.

A Pit fall

$5^{\wedge} 3=5 \times 5 \times 5$	$5^{\wedge} 3=1 \times 5 \times 5 \times 5$
$5^{\wedge} 2=5 \times 5$	$5^{\wedge} 2=1 \times 5 \times 5$
$5^{\wedge} 1=5$	$5^{\wedge} 1=1 \times 5$
$5^{\wedge} 0=?$	$5^{\wedge} 0=1$ correct but we need a proof

Note that we have been using a backward count to utilized pattern recognition

Is zero the middle of the number line

Every positive number has a matching negative number. By symmetry zero must be the center of the number line.

Any number can be the center, because for every number to the left, there is a number to the right.

If we have to choose, then we will use the symmetry argument for selecting zero.

Zero is the number before one

Using a new premise
How we make our numbers:

$$
\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0+1 & 1+1 & 2+1 & 3+1 & \text { Add } 1 \text { to previous number }
\end{array}
$$

$3=1+2 \quad$ commutative property
$3=(0+1)+2$ transitive property
$3=0+(1+2)$ associative property
$3=0+3$ transitive property adding 0
$0+1=1$
$0=1-1 \quad$ subtraction
$0+1=1$
($0+1$)-1=1-1 subtraction
$0+(1-1)=1-1$ associative property
$0+0=0 \quad$ transitive property
$0=0-0 \quad$ subtraction
$0=-0 \quad$ notation

$$
\begin{aligned}
0+0 & =0 \\
3 \times 0 & =0+0+0 \\
& =(0+0)+0 \\
& =0+0 \\
& =0
\end{aligned}
$$

0 is the only real number in which its positive value equals its negative value. A justification for choosing 0 to be at the center of the number line.

Zero and infinity

What is $1 / 0$? There is no integer that is multiplied by zero that will give 1 .
Discovery of fractions and calculus.
$a+1 / 2 a+1 / 4 \quad a+1 / 8 \quad \ldots . \quad$ getting closer to a
$1 / 1 / 2=2 \quad 1 / 1 / 4=1 / 1 / 8=8 \quad a=0$
As the fraction gets smaller, its reciprocal gets larger.
A very large number is infinity.
Thus $1 / 0=\infty$
However, $0=-0 \quad 1 / 0=1 /-0=-\infty \quad$ This is why division by 0 is undefined. You want more proof. Consider graph for $\mathrm{y}=1 / \mathrm{x}$ (hyperbola asymptotes)

Understanding infinity Uncertainty principle

A bee flies between two trains that are traveling towards one other. How far does the bee fly.

We calculate the distance that the bee flies each time it touches the other train. The calculations are infinite if we use this approach. We do the calculation using $d=r x t$ Where r is speed of bee and t is the time it takes the trains to meet

If we have a dropping object, we can measure the accuracy of the speed if the measuring distance is large. We can measure the distant more accurately if the distances use to measure the speed are close. This concept lead to the Heisenberg uncertainty principle.

If the trains starts off at 300 miles apart with one train at 60 mph and the other at 30 mph , the trans will meet in 2 hours The bee is traveling at 80 mph will be traveling for 2 hours, so she travels 160 miles. While the math take forever, the bee will not.

The identity Elements

$a+0=a$	$a \times 1=a$
$0 \times a=0$	$1^{\wedge} a=1$ for $a=$ integer
$1 / 0= \pm \infty$	$1^{\wedge}(1 / 2)= \pm 1$

To simplify the concept of 1 and 0 , we call them the identity elements; 0 for addition and 1 for multiplication.

However, as we studied zero, we got to understand 1. A number before 1^{-} is 9 .
Therefore, we change our defintion: Zero is the integer before 1.
We also come on this dilemma.

0	1	2	3	4	5	6
0		1		2		3

The spacing for the two number lines is different. We come to the conclusion that the numbers above are ordinal numbers (labels) and that the spacings are cardinal numbers. On a clock an ordinal number is 4 o'clock and a cardinal number is $1 \mathrm{hr}, 1$ minute, etc. In look at this example, besides introducing the concept of dimensions, it suggest that 0 may be the first or starting number. The elevators in Europe start at 0 and the US, they start at 1.

Ordinal Cardinal Numbers and Dimensions (1 is not 1)

Ordinal number is a position- 2 o'clock
Cardinal number for arithmetic operations 1 hr 1 o'clock + 2hrs=3 o'clock
Conversion
3600 seconds $=1 \mathrm{hr} 60$ seconds=1minute
3661 pictures at one picture per 3 seconds base 60
$3661+3$ sec $=(3600+60+1)$ xsecondsx3=1:01:01x3=3:03:03
Volume of 1 cubic ft
$1 \mathrm{in}=2.54 \mathrm{~cm} 12 \mathrm{in}=1 \mathrm{ft} 1000 \mathrm{~cm}^{\wedge} 3=1$ liter $1 \mathrm{~cm}^{\wedge} 3=1$ gram $1000 \mathrm{gm}=1$ kilogram $1 \mathrm{~kg}=2.20462 \mathrm{lbs}$
$(1 \mathrm{ft})^{\wedge} 3=(12 \mathrm{in})^{\wedge} 3=(12 \times 2.54 \mathrm{~cm})^{\wedge} 3=(30.48 \mathrm{~cm})^{\wedge} 3=28316.8 \mathrm{~cm}^{\wedge} 3=28317 \mathrm{grams}$
$=28300 x \mathrm{~kg} / 1000=28.3 \mathrm{~kg}=28.3 \times 2.205 \mathrm{lbs}=62.4 \mathrm{lbs}$
1 liter=1000 gm=1 1kilogram 1 liter= 1.05669 quarts 4 quarts=1 gal
$(1 \mathrm{ft})^{\wedge} 3=(28300) \mathrm{gm}^{\wedge} 3=28300$ liters $/ 1000=28.3$ liters=28.3x1.057 quarts-=29.9quarts
$=29.9 \times \mathrm{gal} / 4=7.48$ gallons
$60 \mathrm{mile} / \mathrm{hr}=60 \times 5280 \mathrm{ft} / 3600 \mathrm{sec}=5280 / 60 \mathrm{ft} / \mathrm{sec}=88 \mathrm{ft} / \mathrm{sec}$
Notice how the dimensions are part of the calculations

Discovering Negative Numbers

We have been hammering away at how universal is the definition of zero being the number before 1. Let see how powerful this concept can be,

$$
\begin{aligned}
& \begin{array}{llllll}
B & A & 1 & 2 & 3
\end{array} \\
& B+1 A+10+11+12+1 \\
& A+1=0 \\
& \mathrm{~B}+1=\mathrm{A} \\
& A=0-1 \\
& B+1+1=A+1 \\
& B+2=0 \\
& B=0-2 \\
& A=-1 \quad B=-2 \quad \text { notation } \\
& \mathrm{A}+1=0 \quad \mathrm{~B}+2=0 \\
& -1+1=0 \quad-2+2=0 \quad \text { Definition of a negative number }
\end{aligned}
$$

With these definitions, we can prove the rules of Adding and subtracting Negative numbers.

Discovering Negative Numbers

We have been hammering away at how universal is the definition of zero being the number before 1. Let see how powerful this concept can be,

$$
\begin{aligned}
& \begin{array}{llllll}
B & A & 1 & 2 & 3
\end{array} \\
& B+1 A+10+11+12+1 \\
& A+1=0 \\
& \mathrm{~B}+1=\mathrm{A} \\
& A=0-1 \\
& B+1+1=A+1 \\
& B+2=0 \\
& B=0-2 \\
& A=-1 \quad B=-2 \quad \text { notation } \\
& \mathrm{A}+1=0 \quad \mathrm{~B}+2=0 \\
& -1+1=0 \quad-2+2=0 \quad \text { Definition of a negative number }
\end{aligned}
$$

With these definitions, we can prove the rules of Adding and subtracting Negative numbers.

Rules for Negative Numbers

$-2+2=0$	defintion
$-2=0-2$	subtraction $\quad$$-2+2=0$ 2$=0--2$

$$
\begin{aligned}
& \bigcirc \bigcirc+\bigcirc \bigcirc=0 \quad-2+2=0 \\
& \bigcirc \bigcirc=0-\bigcirc \bigcirc \quad-2=0-2 \\
& \bigcirc \bigcirc=0-\bigcirc \bigcirc \quad 2=0-2
\end{aligned}
$$

More Rules for Negative Numbers

$$
\begin{aligned}
-2+2 & =0 \\
-2 & =0-2
\end{aligned} \begin{aligned}
-2+2=0 \\
2=0--2
\end{aligned}
$$

$$
\begin{array}{cll}
-3+3+-2+2=0+0=0 & \text { definition } & -3+3+-2+2=0+0=0 \\
-3+-2+3+2=0 & \text { commutative } & 2+-3+3+-2=0 \\
(-3+-2)+(3+2)=0 & \text { associative } & (2+-3)+(3+-2)=0 \\
-3+-2=0-(3+2) & \text { subraction } & 2+-3=0-(3+-2) \\
-3+-2=-(3+2) & \text { transitive } & 2-3=-(3-2)
\end{array}
$$

Discovering Fractions

$1=1 / 3+1 / 3+1 / 3=3 \times 1 / 3$
Defintion $3 \times 1 / 3=1$

$1 / 3=1 / 3$	space2 to indicate $/$ is a divison sign	
$3=1 / 1 / 3$	inverse of fraction	$1 / 3+1 / 3=2 / 3$
$3 \times 1 / 3=1$		
$2 \times 3 \times 1 / 3=2$	definition of division	multiplication
$3 \times(2 \times 1 / 3)=2$	commutative/associative	
$2 \times 1 / 3=2 / 3$	division	
$2 \times 1 / 3=2 / 3$	notation	

Multiplying fractions

$$
\begin{array}{ccr}
3 \times 1 / 3 \times 2 \times 1 / 2=1 \times 1=1 & \text { definition } & 3 / 5 \times 2 / 3 \\
3 \times 2 \times 1 / 3 \times 1 / 2=1 & \text { commutation } & =6 / 15 \\
(3 \times 2) \times(1 / 3 \times 1 / 2)=1 & \text { association } & \\
1 / 3 \times 1 / 2=1 / 3 \times 2 & \text { division } & \\
1 / 3 \times 1 / 2=1 /(3 \times 2) & \text { transitive }
\end{array}
$$

Using Fractions

Adding fractions:
Distributive prop

$$
1 / 7+2 / 7+3 / 7=1 \times 1 / 7+2 \times 1 / 7+3 \times 1 / 7=(1+2+3) \times 1 / 7=6 \times 1 / 7=6 / 7
$$

Multiply fractions:
$2 / 3 x 5 / 7=(2 \times 5) /(3 \times 5)=10 / 35$
Adding unlike denominators
$2 / 3+5 / 7=1 \times 2 / 3+1 \times 5 / 7=7 / 7 \times 2 / 3+3 / 3 \times 5 / 7=7 \times 2 / 21+3 \times 5 / 21=14+15 / 21=29 / 21$
Mixed and Improper fractions
$23 / 7=2 / 1+3 / 7=7 / 7 \times 2 / 1+3 / 7=(7 \times 2+3) / 7=17 / 7$

$$
\begin{aligned}
& 3+2 / 7 \\
& \times 7+3 / 7 \\
& \hline 7 \times 3+7 \times 2 / 7 \\
& \quad 3 \times 3 / 7+2 / 7 \times 3 / 7 \\
& \hline 21+2+9 / 7+6 / 49=23+1+2 / 7+6 / 49 \\
& =24+20 / 49
\end{aligned}
$$

$$
23 / 7 \times 52 / 7
$$

$$
52
$$

$$
\times 23
$$

$$
\frac{3 \times 3 / 7+2 / 7 \times 3 / 7}{+0 / 7+6 / 10-22+1+2 / 7+6 / 10} \quad \frac{104}{106} \quad \frac{196}{20}
$$

Most of work done mentally

Very Long Multiplication

Powers of 10: $\quad 500 \times 3000=5 \times 100 \times 3 \times 1000=(5 \times 3) \times(100 \times 1000)=15 \times 100,000=1,500,000$ Just count up the zero

Distributive Property $3 x(2+5)=3 \times 2+3 \times 5$ $3 X 7=6+15$
$21=21$

$3 \times 2+3 \times 5=3 \times(2+5)$

3×7

11	11					
235	235	12347	12347	12347	12347	
235	+ 3	- 5	+ 30	$\times 700$	$\begin{array}{r}1 \\ \times \quad 735 \\ \hline\end{array}$	$=700+30+5$
$\underline{235}$	705	61735	370410	8642900	61735	
705					370410	
					8642900	
					9075045	

12347
$12735=12000+735$
9075045
24694
12347
157239045

12345	123450+6	$123456 \times\left(10^{\wedge} 12+10^{\wedge} 6+1\right)$	
$\times 12345$	$\times 123450+6$		
61725	15239902500	123456123456123456	
49380	$740700 \times 123456123456123456$		
37035	740700	15241383936	123456×123456
24690	3615241383936		$123456 \times 123456 \times 10^{\wedge} 6$
12345	15241383936	15241383936	$123456 \times 123456 \times 10^{\wedge} 12$
152399025		15241399177399177383936	$123456 \times 123456123456123456$
	152413	399177399177383936	$123456 \times 10^{\wedge} 6 \times 123456123456123456$
	152413991773	399177383936	$123456 \times 10^{\wedge 12 \times 123456123456123456 ~}$
	15241414418813596182290783113383936		

Number Structure

Base 10: 0123456789

```
235.34=200+30+5+3/10+4/100
    =2\times100+3\times10+5\times1+3/10+4/100
    =2\times1\mp@subsup{0}{}{\wedge}+3\times1\mp@subsup{0}{}{\wedge}1+5\times1\mp@subsup{0}{}{\wedge}0+3\times1\mp@subsup{0}{}{\wedge}-1+4\times1\mp@subsup{0}{}{\wedge}-2
```

Base 4: 0123

$$
\begin{aligned}
231.3 & =2 \times 4^{\wedge} 2+3 \times 4^{\wedge} 1+1 \times 4^{\wedge} 0+3 \times 4^{\wedge}-1 \\
& =32+12+1+.75=45.75
\end{aligned}
$$

231.3	45.75	$2 x 1024=$	2048
$\times \underline{231.3}$	$\underline{x 45.75}$	$2 x \quad 16=$	32
20211	22875	$3 x$	$4=$
2313	32025	$1 x$	$1=$
20211	22875		$\frac{1}{1}$
$\frac{11302}{200331.01}$	$\underline{18300}$		

Area of Similar Triangles

Each green triangle half of orange side-to-side Area of green triangle proportional to $1 / 2 \times 1 / 2=1 / 4$ $4 x 1 / 4=1=$ area of orange triangle

Area of last line $=9 \times 1 / 4=21 / 4$ (two oranges +1 green)
There are 4 orange triangles
Total area= $4+21 / 4=61 / 4=25 / 4$ (25 green)

$21 / 2$	2.5
X $21 / 2$	+2.5
$2 \times 2+2 \times 1 / 2$	125
2X1/2+1/2×1/2	50
$4+1+1+1 / 4=61 / 4$	6.25
21/2=5/2 $5 / 2 \times 5 / 2=25 / 4$	
There are $251 / 4$ tri	

Irvin M. Miller © 2023

Geometry

Straight Line

A straight line is the shortest distance between two points Intersecting lines
When two lines intersect the opposite angles are $=$. Parallel lines
Two parallel lines make the same angle with a third line Sum of angles of a triangle 180 degree
Congruent triangles

Drawing parallelograms

Irvin M. Miller © 2023

Area

The unit square (rt angles)
Area=LW $L=6 \mathrm{~W}=4$ Area= $6 \times 4=24$ sq units
Perimeter $=L+L+W+W=2(L+W)=2(6+4)=20$ units

$L=s+a \quad W=s-a \quad$ if $s=5 \quad a=1 \quad L=6 \quad W=4$
$A=L W=(s+a)(s-a)=s^{\wedge} 2-a^{\wedge} 2$
$\mathrm{P}=2(\mathrm{~s}+\mathrm{a}+\mathrm{s}-\mathrm{a})=2(2 \mathrm{~s})=4 \mathrm{~s}$
A square is the biggest area for a given perimeter

