Simply Fractions

- Copyright © 2017 Irvin M. Miller, Ph.D.
- Math \& Physics Exploration
- 1054 Freedom Plains Road
- Poughkeepsie, NY 12603
- 845-452-4862
- immiller1@juno.com
- http://www.mathphysicsexplore.org
- http://www.itmeansmath.com
v26Mar2024

Pick a number from 1 to 15

$\begin{array}{ccccc}1 & 3 & 5 & 7 \\ 9 & 11 & 13 & 15\end{array}$
 2367 10111415

| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 12 | 13 | 14 | 15 | 12 | 13 | 14 | 15 |

$$
\begin{array}{rlrrrr}
\hline 2 & 2 & 2 & 2 & -2 & -2 \\
\hline & -2 & -2 \\
\frac{+4}{6} & \frac{-4}{-2} & \frac{+-4}{-2} & \frac{--4}{6} & \frac{+4}{2} & \frac{-4}{-6} \\
\frac{+-4}{-6} & \frac{--4}{2} \\
2-4 & =-(4-2) & & -2+4=(4-2) \\
-==+ & =++ \\
+== & =-+\substack{\text { MPE SimplyFractions } \\
\text { V26Mar2024 }}
\end{array}
$$

$$
\begin{aligned}
& \longrightarrow \\
& \begin{array}{llllll}
2 & 2 & 2 & 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array} \\
& \underline{\times 4 \quad \underline{4} \underline{x} / 4 \quad / 1 / 4 \quad \underline{x} \quad \underline{/ 4} \quad \underline{x} 1 / 4 \quad \underline{/ 1 / 4}, 4} \\
& 2 / 4=2 / 4=1 / 2 \quad 1 / 2 \times 4=4 / 2=2 \\
& \text { //=x =xx } \\
& x /=/=/ x \text { ? }
\end{aligned}
$$

$$
\begin{align*}
& 1 / 3+1 / 3+1 / 3=3 \times 1 / 3=1 \quad \text { definition of a fraction } \\
& -3=0-3 \quad 1 / 3=1 / 3=1 \div 3 \tag{a}\\
& 3=0-3 \quad 3=1 / 1 / 3 \quad / /=x \\
& \text { (b) } \\
& 0=1 \quad-=/ \quad+=x \quad-3=1 / 3 \\
& 3+0=3 \quad \text { identity } 3 \times 1=3 \\
& \text { 3+0-2=3-2 sub/div } 3 \times 1 / 4=3 / 4 \\
& 3+(0-2)=3-2 \text { assoc } \quad 3 x(1 / 4)=3 / 4 \\
& 3+-2=3-2 \text { transitive } 3 \times 1 / 4=3 / 4 \tag{a}
\end{align*}
$$

$$
\begin{array}{ccc}
1 / 3+1 / 3+1 / 3= & 3 \times 1 / 3=1 \quad \text { definition of a fraction } \\
-3=0-3 & 1 / 3=1 / 3=1-3 & \text { (a) } \tag{a}\\
3=0-3 & 3=1 / 1 / 3 & \text { (b) }
\end{array}
$$

$-3+3+-5+5=0+0=0$	def	$1 / 3 \times 3 \times 1 / 5 \times 5=1 \times 1=1$
$-3+-5+3+5=0$	comm	$1 / 3 \times 1 / 5 \times 3 \times 5=1$
$(-3+-5)+(3+5)=0$	assoc	$(1 / 3 \times 1 / 5) \times(3 \times 5)=1$
$-3+-5=0-(3+5)$	sub/div	$1 / 3 \times 1 / 5=1 /(3 \times 5)$
$-3+-5=-(3+5)$	trans	$1 / 3 \times 1 / 5=1 /(3 \times 5)$

Something to think about:

$$
1 / 3=/ 3
$$

$3 \times 1 / 3=1=3 x / 3 \quad x /=/$
$3 / 1 / 4=3 / / 4=4 \times 3 \quad / /=x \quad$ corr

What is a Fraction?

Division is reverse multiplication:

$$
\begin{array}{rlr}
3 \times 2=6 & 3 \times ?=2 \\
3 & =6 / 2 & ?=2 / 3 \\
2=6 / 3
\end{array} \quad \text { Note: } 2 / 3=2 \div 3
$$

This is multiplication: $\quad 3 \times 5=5+5+5$
Now let's make a discovery!
$5 \times 1 / 5=1 / 5+1 / 5+1 / 5+1 / 5+1 / 5=1$
A (unary) fraction is defined as:

$$
\mathrm{n} \times 1 / \mathrm{n}=1 \quad 1 / \mathrm{n}=/ \mathrm{n}(\mathrm{my} \text { notation })
$$

A (unary) fraction is defined such that when it is multiplied by its inverse (the denominator), we get the identity element for multiplication.

Fraction Point

1/4
\qquad

base 4 decimal point
1/4 v26Mar2024

Classic mistakes

A month is not $1 / 12$ of a year, because the multiplication assumes all the parts are the same. Jan=31 days April=30 days

A week is not $1 / 52$ of a year 1 year $=365$ days $7 \times 52=364$ The product must be 1 .

Cut a dollar into 100 pieces. One piece is not a cent, it is a piece of confetti. A part of a whole is not the correct definition for a fraction.

What is a proper fraction?

Basic Math properties:
Associative (grouping)
Commutative (ordering)
Identity (0 fror + , $\mathbf{1}$ for \mathbf{x})
Distributive (2+3)x7=2x7+3x7
Transitive $=$

(A)	$\begin{aligned} 3 \times 1 / 3 & =1 \\ 1 / 3 & =1 / 3 \end{aligned}$	defintion division
	$\begin{aligned} & 3 \times 1=3 \\ & 3 \times 1 / 7=3 / 7 \\ & 3 \times(1 / 7)=3 / 7 \end{aligned}$	identity division association
	$3 \times(1 / 7)=3 / 7$	transitive (A)

Dissecting a Proper Fraction

3/7 usually read as three sevenths
3/7 3 divided by 7
$3 / 7=3 \times 1 / 7$
3/7=1/7 x 3 commutative property
$3 \times / 7$ my notation
/7x 3 my notation
Just think of $1 / 7$ (/7) as just another number element as one would think of an integer as a number element

1/7

7 (equal) parts=whole

$3 \times 1 / 7=3 / 7$

MPE SimplyFractions Copyright © $20 h \neq$ Irvin M. Miller, Ph.D. v26Mar2024

Why do we add just the numerators when adding fractions (and not add the denominators too).

$$
\begin{array}{ll}
& 1 / 7+2 / 7+3 / 7 \\
= & 1 \times 1 / 7+2 \times 1 / 7+3 \times 1 / 7 \\
& \\
1 \times 1 / 7+2 \times 2 / 7+3 \times 1 / 7 & \\
= & (1+2+3) \times 1 / 7 \\
= & 6 \times 1 / 7 \\
= & 6 / 7
\end{array}
$$

Answer: Because of the distributive property.

That is why the denominators must be the same!
Question, use manipulatives to validate (verify) MPE SimplyFractions Copyright © 2012 Irvin M. Miller, Ph.D. v26Mar2024

Multiplying Fractions

Adding Fractions with different denominators

$$
\begin{aligned}
& 1 \times 6=6 \quad 1=6 / 6 \quad \text { also } \quad 6=6 / 1 \\
& 1 / 2=1 \times 1 / 2=3 / 3 \times 1 / 2=3 \times 1 / 2 \times 3=3 / 6
\end{aligned}
$$

$1 / 2+1 / 3=1 \times 1 / 2+1 \times 1 / 3$

$$
\begin{aligned}
& =3 / 3 \times 1 / 2+2 / 2 \times 1 / 3 \\
& =3 \times 1 /(3 \times 2)+2 \times 1 /(2 \times 3) \\
& =3 / 6+2 / 6=5 / 6
\end{aligned}
$$

Adding fractions with different denominators

Dividing fractions

$$
\begin{aligned}
& 6 / 5 \times 2 / 3=12 / 15 \\
& 5 / 6 \times 6 / 5 \times 2 / 3=5 / 6 \times 12 / 15 \\
& 5 \times 6 /(5 \times 6) \times 2 / 3=12 / 15 \times 5 / 6 \\
& 30 / 30 \times 2 / 3=12 / 15 \times 5 / 6 \\
& 1 \times 2 / 3=12 / 15 \times 5 / 6 \\
& 2 / 3=
\end{aligned}
$$

$$
2 / 3=12 / 15 / 6 / 5
$$

$$
12 / 15 \times 5 / 6
$$

$12 / 15=4 \times 3 /(5 \times 3)=4 / 5 \times 3 / 3=4 / 5 \times 1=4 / 5$ $4 / 5 / 5 / 6=4 \times 5 /(5 \times 6)=4 / 6 \times 5 / 5=4 / 6$ $4 / 6=2 \times 2 /(2 \times 3)=2 / 2 \times 2 / 3=1 \times 2 / 3=2 / 3$

Improper fractions

$$
\begin{aligned}
42 / 3=4+2 / 3 & =3 / 3 \times 4+2 / 3 \\
& =(4 \times 3) / 3+2 / 3 \\
& =(4 \times 3+2) / 3 \\
& =14 / 3 \\
14 / 3=(4 \times 3+2) / 3 & =4 \times 3 / 3+2 / 3 \\
& =4 / 1 \times 3 / 3+2 / 3 \\
& =4+2 / 3 \\
& =42 / 3
\end{aligned}
$$

Reducing Fractions

$$
\begin{aligned}
375 / 1000 & =3 \times 5 \times 5 \times 5 /(2 \times 2 \times 2 \times 5 \times 5 \times 5) \\
& =3 / 8 \times 5 \times 5 \times 5 /(5 \times 5 \times 5)=3 / 8 \times 1 \times 1 \times 1=3 / 8
\end{aligned}
$$

$$
\begin{aligned}
75 \times 5 /(5 \times 200) & =75 / 200 \times(5 / 5)=75 \times 200 \\
& =5 \times 15 /(5 \times 40)=15 / 40 \times 5 / 5)=15 / 40 \\
& =3 \times 5 /(8 \times 5)=3 / 8 \times 5 / 5=3 / 8
\end{aligned}
$$

Summary

Adding fractions with same denominators Multplying fractions
Integer as a fraction
1 as a fraction
Adding fractions different denominators
Reducing fractions
Mixed numbers

The Big Focus (Multiplication \& Division)

Remember $3 \times 1 / 3=1$ and $1 / 3=1 / 3$ (a)
Note power of associative property:
$35 \times 1 / 35=1=(3 \times 5) \times 1 /(3 \times 5)$ so $1 /(3 \times 5)=1 /(3 \times 5)$
Let's begin:
$3 \times 1 / 3 \times 5 \times 1 / 5=1 \times 1=1$ definition $3 \times 1 / 3 \times 5 \times 1 / 5=1 \times 1=1$
$3 \times 5 \times 1 / 3 \times 1 / 5=1 \quad$ commutative $5 \times 1 / 3 \times 3 \times 1 / 5=1$
$(3 \times 5) \times(1 / 3 \times 1 / 5)=1 \quad$ associative $\quad(5 \times 1 / 3) \times(3 \times 1 / 5)=1$
$1 / 3 \times 1 / 5=1 /(3 \times 5) \quad$ division $\quad 3 \times 1 / 5=1 /(5 \times 1 / 3)$
$1 / 3 \times 1 / 5=1 /(3 \times 5)$
(a) transitive $\quad 3 / 5=1 / 5 / 3$
multiply numerators
invert fraction in division
Continuing:
$(2 \times 7) \times 1 / 3 \times 1 / 5=(2 \times 7) \times 1 /(3 \times 5) \quad$ multiplying
$2 \times 1 / 3 \times 7 \times 1 / 5=(2 \times 7) \times(1 /(3 \times 5)$ commutative
$2 / 3 \times 7 / 5==(2 \times 7) /(3 \times 5) \quad$ transitive (notation)
MPE SimplyFractions Copyright © 2020 Irvin M. Miller, Ph.D. v26Mar2024

Adding fractions of different denominators
 (The importance of 1)

Note: $1=7 \times 1 / 7=7 / 7$ notation
Just make the denominators the same

$$
\begin{array}{rlr}
& 2 / 5+3 / 7 & \\
= & 1 \times 2 / 5+1 \times 3 / 7 & \text { identity } \\
= & 7 / 7 \times 2 / 5+5 / 5 \times 3 / 7 & \text { transitive } \\
= & (7 \times 2) /(7 \times 5)+(5 \times 3) /(5 \times 7) & \text { multiply fractions } \\
= & ((7 \times 2)+(5 \times 3)) /(5 \times 7) & \text { adding fractions } \\
= & (14+15) / 35=29 / 35 &
\end{array}
$$

Reducing fractions(Prime Numbers)
$60 / 72=(2 \times 2 \times 3 \times 5) /(2 \times 2 \times 2 \times 3 \times 3)$ Transitive (factoring)
$=2 / 2 \times 2 / 2 \times 3 / 3 \times 5 /(2 \times 3)$ multiply fractions
$=1 \times 1 \times 1 \times 5 / 6=5 / 6 \quad$ transitive
MPE SimplyFractions Copyright © 202才 Irvin M. Miller, Ph.D. v26Mar2024

Mixed numbers and improper fractions

Note: $3 \times 1=3$

$$
3=3 / 1
$$

$$
33 / 7=3+3 / 7
$$

$$
=3 / 1+3 / 7
$$

$$
=7 / 7 \times 3 / 1+3 / 7 \quad \text { identity }
$$

$$
=(7 \times 3) /(7 \times 1)+3 / 7 \text { multiplying }
$$

$$
=((7 \times 3)+3) / 7 \quad \text { adding }
$$

$$
=(21+3) / 7=24 / 7 \quad \text { transitive }
$$

Applying what we learned

$32 / 7 \times 73 / 7=$?

$$
\begin{gathered}
\text { The old way } \\
23 / 7 \times 52 / 7=23 \times 52 / 49 \\
52 \\
\frac{\mathbf{2 4}}{\mathbf{5 2 3}} \\
\frac{49) 1196}{156} \\
\frac{104}{1196}
\end{gathered}
$$

$\left.\left.\begin{array}{l}3+2 / 7 \\ \times 7+3 / 7 \\ \hline 21+2 \\ \\ \hline 2420 / 49\end{array}\right]+2 / 7\right)+6 / 49$

Time consuming and prone to mistakes

Discovery

Fractions and modular arithmetic

On a clock $12=2 \times 12=3 \times 12=4 \times 12=\ldots$

$1 / 4 \times$	$(8$	$8+12$	$8+24$	$8+36)$
$=$	2	5	8	11

Check:

$$
\begin{array}{ll}
4 \times 2=8 & 4 \times 5=20=(20-12)=8 \\
4 \times 8=32=(32-24)=8 & 4 \times 11=44=(44-36)=8
\end{array}
$$

Fractions and exponents

$$
16^{\wedge} 1 / 4=\left(16 x e^{2 n \pi i}\right)^{1 / 4}=2 x\left(e^{\substack{n-0}} e^{\substack{n i 1 / 2}} \begin{array}{c}
\frac{n-2}{n i} \\
e^{n i} e^{n \pi i / 2}
\end{array}\right)
$$

$$
=\begin{array}{lllll}
2 & 2 \mathrm{i} & -2 & -2 \mathrm{i} & 4 \text { answers }
\end{array}
$$

MPE SimplyFractions Copyright © 2024 Irvin M. Miller, Ph.D. v26Mar2024

Summary

Importance of the basic postulates of arithmetic
A set of rules based upon observation
Knowing definitions is important
Proving the rules lets us understand what we are doing and makes it easier to retain what we learned

Manipulatives should be used for validation
Understanding leads to discovery (thinking)

$$
\begin{array}{ll}
\mathbf{n} \times 1 / \mathbf{n}=1=\mathbf{n} / \mathbf{n} \text { defintion } & \mathbf{n} / \mathbf{m}=\mathbf{n} \times 1 / \mathbf{m} \\
\mathbf{n} / \mathbf{m} \times \mathbf{p} / \mathbf{q}=(\mathbf{n} \times \mathbf{p}) /(\mathbf{m} \times \mathbf{q}) & 1 /(\mathbf{n} / \mathbf{m})=\mathbf{m} / \mathbf{n} \\
\mathbf{n} / \mathbf{m}+\mathbf{p} / \mathbf{q}=((\mathbf{n} \times \mathbf{q})+(\mathbf{m} \times \mathbf{p})) /(\mathbf{m} \times \mathbf{q})
\end{array}
$$

Sample Problems

$1 / 11+5 / 11+4 / 11=$
$3 / 7+2 / 5=$
$2 / 9 \times 5 / 7=$
$6 / 72=$
Convert to mixed and improper fractions
$23 / 5=$
3 2/5 =
Do two ways

$$
32 / 7 \times 73 / 7=
$$

Reduce
26/65
Division

$$
\begin{array}{ll}
4 / 1 / 2= & 4 \times 1 / 2= \\
1 / 4 / 1 / 2= & 1 / 4 \times 1 / 2= \\
1 / 2 / 4= & \text { RIPE S4nplyFractions } \\
\text { v26Mar2024 }
\end{array}
$$

