Linear Equations Matrices and Determinants

Introduction

The primary purpose of this topic is to develop the mathematical discipline that is necessary to solve a complex problem that requires many numerical and algebraic computations and which it is expected that one would make many errors, which have to be identified and corrected. This seems to be an impossible task unless one can effectively layout the problem and identify many patterns.

This problem will acquaint one with the approach that a mathematician would take to develop tools necessary to accomplish the task. One will also see how these tools can be used to develop a new mathematical topic.

It is easy for some one to solve a set of linear equation with two unknowns and a bit more difficult to solve one with three unknowns -- probably about 3 times harder. For four unknowns, it is 12 times and for five, 60 times more difficult - near impossible.

We begin by developing a new notation.

$$
\begin{aligned}
& \left(\begin{array}{ll}
(11 a 12)
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& \binom{3}{\hline}
\end{aligned}
$$

a_{rc} represents a number in an array where subscript r is the row and c is the column. The value of the subscript is as follows: $a 11=1, a 12=2, a 21=3$, and $a 22=4$. We can multiply these matrices as follows:

$$
\left.\begin{array}{l}
(\mathrm{a} 11 \mathrm{a} 12) \quad(\mathrm{b} 11 \mathrm{~b} 12)=(\mathrm{a} 11 \mathrm{~b} 11+\mathrm{a} 12 \mathrm{~b} 21 \\
(\mathrm{a} 21 \mathrm{a} 22) \times(\mathrm{b} 21 \mathrm{~b} 22)
\end{array} \begin{array}{l}
(\mathrm{a} 21 \mathrm{~b} 11+\mathrm{a} 22 \mathrm{~b} 21 \\
\mathrm{a} 21 \mathrm{~b} 12+\mathrm{a} 22 \mathrm{~b} 22)
\end{array}\right)
$$

To see this more clearly let look how each element is calculated:

$$
\begin{aligned}
& (\mathrm{a} 11 \mathrm{a} 12) \quad(\mathrm{b} 11 \mathrm{~b} 12)=(\mathrm{a} 11 \mathrm{~b} 11+\mathrm{a} 12 \mathrm{~b} 21 \mathrm{a} 11 \mathrm{~b} 12+\mathrm{a} 21 \mathrm{~b} 22) \\
& \text { (a21 a22) x (b21 b22) (a21b11+a22b21 a21b12+a22b22) } \\
& (\mathrm{a} 11 \mathrm{a} 12) \quad(\mathrm{b} 11 \mathrm{~b} 12)=(\mathrm{a} 11 \mathrm{~b} 11+\mathrm{a} 12 \mathrm{~b} 21 \quad \mathrm{a} 1 \mathrm{~b} 12+\mathrm{a} 21 \mathrm{~b} 22) \\
& \text { (a21 a22) x (b21 b22) (a21b11+a22b21 a21b12+a22b22) } \\
& \text { (a11 a12) } \quad(b 11 \mathrm{~b} 12)=(\mathrm{a} 11 \mathrm{~b} 11+\mathrm{a} 12 \mathrm{~b} 21 \quad \mathrm{a} 11 \mathrm{~b} 12+\mathrm{a} 21 \mathrm{~b} 22) \\
& \text { (a21 a22) x (b21 b22) (a21b11+a22b21 a21b12+a22b22) } \\
& \text { (a11 a12) } \quad(b 11 \mathrm{~b} 12)=(\mathrm{a} 11 \mathrm{~b} 11+\mathrm{a} 12 \mathrm{~b} 21 \quad \mathrm{a} 11 \mathrm{~b} 12+\mathrm{a} 21 \mathrm{~b} 22) \\
& \text { (a21 a22) x (b21 b22) (a21b11+a22b21 a21b12+a22b22) }
\end{aligned}
$$

Consider the notation

$$
\sum_{\mathrm{j}=1}^{2} \mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{jk}}=\mathrm{a}_{\mathrm{i} 1} \mathrm{~b}_{1 \mathrm{k}}+\mathrm{a}_{\mathrm{i} 2} \mathrm{~b}_{2 \mathrm{k}}=\mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{jk}} \quad \text { (Einstein notation) }
$$

You might notice that the outer subscripts of the product match the row/column indices of where the product is located:

$$
\begin{aligned}
& \left(\begin{array}{ll}
\text { a11 a12 }) & (\text { b11 b12 })=\left(\begin{array}{ll}
\text { a1jbj1 } & \text { a1jbj2 }
\end{array}\right) \\
(\text { a21 a22 }) \times(\text { b21 b22 }) & (\text { a2jbj1 } \\
\text { a2jbj2 }
\end{array}\right)(\text { using Einstein notation })
\end{aligned}
$$

Matrixes satisfy the associative and commutative properties for addition and the associative properties of multiplication, but not the commutative properties. They also follow the distributive property. We can evaluate the matrix (determinat) as follows:

$$
\begin{aligned}
& |\mathrm{a} 11 \mathrm{a} 12| \\
& |\mathrm{a} 21 \mathrm{a} 22|=\mathrm{a} 11 \mathrm{a} 22-\mathrm{a} 21 \mathrm{a} 12
\end{aligned}
$$

Graphically, we are multiplying on the downward diagonal and subtracting the multiplication on the upper diagonal. To determine the sign of the product we use a concept called permutation. The following numbers are assigned permutation directions as follows:

$$
\begin{array}{rl}
\text { Positive } & \text { Negative } \\
123312231 & 321213132
\end{array}
$$

We in essence rotate the forward sequence on backward sequence until we get the original positions. If both the row and column indices are in the same direction, the sign is positive. Consider a three dimensional determinant:

$$
\begin{aligned}
& |\mathrm{a} 11 \mathrm{a} 12 \mathrm{a} 13| \\
& |\mathrm{a} 21 \mathrm{a} 22 \mathrm{a} 23|=-\mathrm{a} 11 \mathrm{a} 22 \mathrm{a} 33+\mathrm{a} 12 \mathrm{a} 23 \mathrm{a} 31+\mathrm{a} 13 \mathrm{a} 32 \mathrm{a} 21 \\
& |\mathrm{a} 31 \mathrm{a} 32 \mathrm{a} 33|-(\mathrm{a} 22 \mathrm{a} 13 \mathrm{a} 31+\mathrm{a} 11 \mathrm{a} 23 \mathrm{a} 32+\mathrm{a} 33 \mathrm{a} 21 \mathrm{a} 12)
\end{aligned}
$$

You will notice that each product has two of each index-two 1s, two 2 s , and two threes. If we took a11a12a13, it has $4=$ four ones and only one 2 and 3. It cannot be combined with other elements in its row or column. This suggest that we could rewrite the determinant as follows:

$$
\begin{aligned}
& \text { |a32 a33| |a31 a33| |a31 a32| }
\end{aligned}
$$

To keep the signs correct we had to alternate signs in the decomposition. Note the pattern for say a12: | a11 a12 a13| | a21 a22 a23| |a31 a32 a33|
We eliminate those elements in the row (1) and the column (2). You can see that the rules are built upon the observation of patterns.

What is the incentive for developing the concept and rules for matrices and determinants?

Simultaneous equations

Consider the following equations:
$3 x+5 y=98$
$7 x+2 y=103$

We are going to write them in a matrix notation:

```
a11=3,a12=5 x1=x
a21=7, a22=2, x2=y
(3 5) (x1) =( 98)
(7 2) (x2) = (103)
```

We are now going to solve for x and y watching the algebraic and matrix approaches:

$$
\begin{aligned}
& 3 x+5 y=98 \\
& (35)(x)=(98) \quad|35|=3 \times 2-7 \times 5=-29 \\
& 7 x+2 y=103 \\
& 7 x \quad 7 * 3 x+7 * 5 y=7 x 98 \\
& (72)(y)=(103) \quad|72|
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{x} \quad 2 * 3 \mathrm{x}+2 * 5 \mathrm{y}=2 \mathrm{x} 98
\end{aligned}
$$

> We have shown by using numbers how the terms of the determinants and how we solve the problem algebraically relate. You will note that we solve for each variable by replacing the contents of the column number for the variable of interest. In the case of two unknowns, the use of the matrix determinant notation does not make it easier to solve the problem.

Simultaneous equations of three unknowns

We are going to be more rigorous as we show a one to one correspondence between the Coefficients in the algebraic expressions as to the terms in the determinants.

$$
\begin{aligned}
& \mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{X}_{2}+\mathrm{a}_{13} \mathrm{X}_{3}=\mathrm{b}_{1} \quad \mid \mathrm{a} 11 \text { a12 a13 } \mid \\
& \mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\mathrm{a}_{23} \mathrm{x}_{3}=\mathrm{b}_{2} \quad|\mathrm{a} 21 \mathrm{a} 22 \mathrm{a} 23|=\mathrm{a} 11 \mathrm{a} 22 \mathrm{a} 33+\mathrm{a} 12 \mathrm{a} 23 \mathrm{a} 31+\mathrm{a} 13 \mathrm{a} 21 \mathrm{a} 32 \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} \quad \mid a 31 \text { a32 a33| }-(a 13 a 22 a 31+a 11 a 23 a 32+a 12 a 21 a 33)
\end{aligned}
$$

Preparing to eliminate x 3 from $1^{\text {st }}$ and $2^{\text {nd }}$ equations a33a11x1+a33a12x2+a33a31x3=a33b1 a33a21x1+a33a22x2+a33a23x3=a33b2
$a 13 a 31 \times 1+a 13 a 32 \times 2+a 13 a 33 \times 3=a 13 b 3 \quad a 23 a 31 \times 1+a 23 a 32 \times 2+a 23 a 33 \times 3=a 23 b 3$
Elimination of x3
(a33a11-a13a31)x1+(a33a12-a13a32)x2=a33b1-a13b3
(a33a21-a23a31)x1+(a33a22-a23a32)x2=a33b2-a23b3
solution for x 1

```
((a33a22-a23a32)(a33a11-a13a31)-(a33a12-a13a32)(a33a21-a23a31))x1=
                                    (a33a22-a23a32)(a33b1-a13b3)-(a33a12-a13a32)(a33b2-a23b3)
```

Coefficents of x 1 match determinant and constant term matches determinant after dividing by a33

```
a33(a33a22a11-a23a32a11-a13a31a22-a33a12a21+a12a23a31+a13a32a21)x1=
                        a33((a22a33-a23a32)b1-(a33a12-a13a32)b2+(-a22a13+a12a23)b3)
    |b1 a12 a13 |
    |b2 a22 a23 |=(a22a33-a32a23)b1+(a13a32-a12a33)b2+(a12a23-a22a13)b3
    |b3 a32 a33|
    |b1 a12 a13|
    |b2 a22 a23|
    |b3 a32 a33|
x = ------------------
    a21 a22 a23|
    |a31 a32 a33|
```

Back to where x 3 was eliminated (a33a11-a13a31)x1+(a33a12-a13a32)x2=a33b1-a13b3 (a33a21-a23a31)x1+(a33a22-a23a32)x2=a33b2-a23b3
solution for x 2
((a33a21-a23a31)(a33a12-a13a32)-(a33a11-a13a31)(a33a22-a23a32))x2= (a33a21-a23a31)(a33b1-a13b3)-(a33a11-a13a31)(a33b2-a23b3)

Coefficents of x2 match determinant and constant term matches determinant after dividing by a33

$$
\begin{array}{r}
\text { a33(a33a21a12-a23a31a12-a21a13a32-a33a11a22+a13a31a22+a11a23a32)x2 }= \\
\text { a33((a21a33-a23a31)b1+(a13a31-a11a33)b2+(-a21a13+ a11a23)b3 }
\end{array}
$$

multiply both sides by -1 to correct signs

```
|a11 b1 a13 |
|a21 b2 a23 |=(a23a31-a21a33)b1+(a11a33-a31a13)b2+(a21a13-a23a11)b3
|a31 b3 a33 |
```

$$
y=\left|\begin{array}{lll}
\left|\begin{array}{lll}
\text { a11 } & \text { b1 } & \text { a13 }
\end{array}\right| \\
\mid \text { a21 } & \text { b2 } & \text { a23 }
\end{array}\right|
$$

Let us check with numbers

$$
\begin{aligned}
& 2 x+3 y+4 z=20 \\
& 5 x+6 y+7 z=38 \\
& 8 x+9 y+9 z=53 \\
& \mathrm{D}=\left|\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 7 \\
8 & 9 & 9
\end{array}\right|=108+168+180-192-126-135=3 \\
& \text { | } 2034 \text { | } \\
& \text { |38 } 67 \text { |/ } \mathrm{D}=(1080+1113+1368-1272-1260-1026) / \mathrm{D}=3 / \mathrm{D}=3 / 3=1 \\
& \text { | } 539 \text { 9| } \\
& \begin{array}{l}
\left|\begin{array}{lll}
2 & 20 & 4 \\
\mid & 38 & 7 \\
\mid & 53 & 9
\end{array}\right| / \mathrm{D}=(684+1120+1060-1216-742-900) / \mathrm{D}=6 / \mathrm{D}=6 / 3=2
\end{array}
\end{aligned}
$$

Therefore $\mathrm{x}=1, \mathrm{y}=2$, and $\mathrm{z}=3$
Now we can see the power of organization and patterns in making it very easy to solve a set of equations with three unknowns.

Inverse matrices

The inverse matrix is defined such that when we multiply it times the original matrix we will get the unit matrix: (10)

Applying the inverse matrix to the numbers to the right of the equal signs, we can get the answer with fewer calculations if we exclude the calculations it took to determine the inverse matrix.

We will observe that to obtain the inverse matrix we interchange the top to bottom diagonal, change the signs of the variables on the diagonal from the bottom to top, and divide by the value of the determinant. In the next section we will prove this.
Inverse for $2 \times 2(35)^{-1}=(2-5) /|35|=(2-5) /-29$

$$
(72) \quad\left(\begin{array}{ll}
-7 & 3
\end{array}\right) \quad|72| \quad\left(\begin{array}{ll}
-7 & 3
\end{array}\right)
$$

$$
\begin{aligned}
1 /-29 \times(2-5)(98)=(2 \times 98-5 \times 103) /-29= & (196-515) /-29=(-319) /-29= \\
\left(-73^{(2)}(103)\right. & (-7 \times 98+3 \times 103) \\
(-686+309) \quad(377) & =(13)
\end{aligned}
$$

Inverse for the $\mathbf{3 x} \mathbf{3}$ matrix

Let us review some of the basic principles.

Expanding determinant

$$
\begin{aligned}
& \text { |a11 a12 a13| }
\end{aligned}
$$

Matrix Multiplication

(c11 c12 c13) (a11 a12 a13) (c11a11+c12a21+c13a31 c11a12+c12a22+c13a32 c11a13+c12a23+c13a33) $(\mathrm{c} 21 \mathrm{c} 22 \mathrm{c} 23) \times(\mathrm{a} 21 \mathrm{a} 22 \mathrm{a} 23)=(\mathrm{c} 21 \mathrm{a} 11+\mathrm{c} 22 \mathrm{a} 21+\mathrm{c} 23 \mathrm{a} 31 \mathrm{c} 21 \mathrm{a} 12+\mathrm{c} 22 \mathrm{a} 22+\mathrm{c} 23 \mathrm{a} 32 \mathrm{c} 21 \mathrm{a} 13+\mathrm{c} 32 \mathrm{a} 23+\mathrm{c} 13 \mathrm{a} 32)$
(c31 c32 c33) (a31 a32 a33) (c31a11+c32a21+c33a31 c31a12+c32a22+c33a32 c31a13+c32a23+c33a33)
$\mathrm{d}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{3} \mathrm{c}_{\mathrm{ik}} \mathrm{a}_{\mathrm{ki}}=\mathrm{c}_{\mathrm{ik}} \mathrm{a}_{\mathrm{ki}}$ notice summation of center indices.

Permutations

$\operatorname{sgn}(a 11 \mathrm{a} 22 \mathrm{a} 3)=+$ because both sequences in order
$\operatorname{sgn}(\mathrm{a} 11 \mathrm{a} 32 \mathrm{a} 23))=-$ because right index sequential right and left is sequential left
123231312 are right sequential
321213132 are left sequential

```
(c11 c12 c13) (a11 a12 a13) ( 1 0 0)
( c21 c22 c23) x (a21 a22 a23) = (0 1 0) the unit matrix
(c31 c32 c33) (a31 a32 a33) (0 0 1)
```

Finding inverse c_{ji} let $\mathrm{x}=\mathrm{c} 11 \mathrm{y}=\mathrm{c} 12 \mathrm{z}=\mathrm{c} 13$ where we look at matrix multiplications of the top row of the left matrix by the three columns of the right matrix.

```
a11x+a21y+a31z=1
a12x+a22y+a32z=0
a13x+a23y+a33z=0
```

eliminate y then x :

$$
\begin{aligned}
& \mathrm{a} 23 \mathrm{a} 12 \mathrm{x}+\mathrm{a} 23 \mathrm{a} 22 \mathrm{y}+\mathrm{a} 23 \mathrm{a} 32 \mathrm{z}=0 \\
& \mathrm{a} 22 \mathrm{a} 13 \mathrm{x}+\mathrm{a} 22 \mathrm{a} 23 \mathrm{y}+\mathrm{a} 22 \mathrm{a} 33 \mathrm{z}=0 \\
& (\mathrm{a} 23 \mathrm{a} 12-\mathrm{a} 22 \mathrm{a} 13) \mathrm{x}+(\mathrm{a} 23 \mathrm{a} 32-\mathrm{a} 22 \mathrm{a} 33) \mathrm{z}=0 \\
& \mathrm{x}=((\mathrm{a} 22 \mathrm{a} 33-\mathrm{a} 23 \mathrm{a} 32) /(\mathrm{a} 12 \mathrm{a} 23-\mathrm{a} 22 \mathrm{a} 13)) \mathrm{z}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a} 13 \mathrm{a} 12 \mathrm{x}+\mathrm{a} 13 \mathrm{a} 22 \mathrm{y}+\mathrm{a} 13 \mathrm{a} 32 \mathrm{z}=0 \\
& \mathrm{a} 12 \mathrm{a} 13 \mathrm{x}+\mathrm{a} 12 \mathrm{a} 23 \mathrm{y}+\mathrm{a} 12 \mathrm{a} 33 \mathrm{z}=0 \\
& \quad(\mathrm{a} 13 \mathrm{a} 22-\mathrm{a} 12 \mathrm{a} 23) \mathrm{y}+(\mathrm{a} 13 \mathrm{a} 32-\mathrm{a} 12 \mathrm{a} 33) \mathrm{z}=0 \\
& y=((\mathrm{a} 13 \mathrm{a} 32-\mathrm{a} 2 \mathrm{a} 33 /(\mathrm{a} 12 \mathrm{a} 23-\mathrm{a} 13 \mathrm{a} 22) \mathrm{z}
\end{aligned}
$$

Substituting:

```
z(a11(a22a33-a23a32)/(a12a23-a22a13)+a21(a13a32-a12a33)/(a12a23-a13a22)+a31)=1
z=
    (a12a23-a22a13)/((a11(a22a33-a23a32)+a21(a13a32-a12a33)+a31(a12a23-a22a13))
```



```
    D=|a21 a22 a23|
    |a31 a32 a33|
```



```
    |a31 a32 a33|
```

Finding inverse $c_{j i}$ let $x=c 21 y=c 22 \mathrm{z}=\mathrm{c} 23$ where we look at matrix multiplications of the second row of the left matrix by the three columns of the right matrix.

```
(c11 c12 c13) (a11 a12 a13) (10 0)
    (c21 c22 c23) x (a21 a22 a23)=(0 0 0)
    (c31 c32 c33) (a31 a32 a33) (0 0 1)
```

a11 $x+$ a21 y a31 $z=0$
$\mathrm{a} 12 \mathrm{x}+\mathrm{a} 22 \mathrm{y}+\mathrm{a} 32 \mathrm{z}=1$
a13 $x+a 23 y+a 33 z=0$
eliminate y then x :

```
a23a11x + a23a21 y + a23 a31z=0
a21a13x+a21 a23 y + a21 a33z=0
    (a23a11-a21a13)x+(a23a31-a21a33)z=0
    x=-((a23a31-a21a33)/(a11a23-a21a13)) z
```

a13a11 $x+a 13 a 21 y+a 13 a 31 z=0$
a11a13 $x+a 11 a 23 y+a 11 a 33 z=0$
$(a 13 a 21-a 11 a 23) y+(a 13 a 31-a 11 a 33) z=0$
$y=-(a 11 a 33-a 13 a 31) /(a 11 a 23-a 21 a 13)$

Substituting:

```
z(-a12(a23a31-a21a33)/(a11a23-a21a13)-a22(a11a33-a13a31)/(a11a23-a21a13)+a32)=1
Z=
    -(a11a23-a21a13)/((a12(a23a31-a21a33))+a22(a11a33-a13a31)-a32(a11a23-a21a13))
z= - - |a11 a13| / D |
```



```
x= -| 21 23|/D D |a11 a12 a13|
    |1 33| D=|a21 a22 a23|
    |a31 a32 a33|
```

Finding inverse c_{ji} let $\mathrm{x}=\mathrm{c} 31 \mathrm{y}=\mathrm{c} 32 \mathrm{z}=\mathrm{c} 33$ where we look at matrix multiplications of the bottom row of the left matrix by the three columns of the right matrix.

```
(c11 c12 c13) (a11 a12 a13) (10 0)
    (c21 c22 c23) x (a21 a22 a23)=(0 1 0)
    (c31 c32 c33) (a31 a32 a33) (0 0 1)
```

$\mathrm{a} 11 \mathrm{x}+\mathrm{a} 21 \mathrm{y}$ a31 $\mathrm{z}=0$
$\mathrm{a} 12 \mathrm{x}+\mathrm{a} 22 \mathrm{y}+\mathrm{a} 32 \mathrm{z}=0$
a13 $x+a 23 y+a 33 z=1$
eliminate y then x :

```
a22a11 x + a22a21 y + a22a31 z=0
a21a12 x + a21a22 y + a21a32 z=0
(a22a11-a21a12)x +(a22a31-a21a32)z=0
    x=(a21a32-a22a31)/(a22a11-a21a12) z
```

a12a11 x+a12a21y+a12a31z=0
a11a12 $x+a 11 a 22 y+a 11 a 32 z=0$
(a12a21-a11a22)y+(a12a31-a11a32)z=0
$y=-(a 11 a 32-a 12 a 31) /(a 22 a 11-a 12 a 21) z$

Substituting:

```
z(a13(a21a32-a22a31)/(a22a11-a21a12)-a23(a11a32-a12a31)/a22a32-a12a31)+a33)=1
```

$$
(\mathrm{a} 11 \mathrm{a} 22-\mathrm{a} 21 \mathrm{a} 12) /(\mathrm{a} 13(\mathrm{a} 21 \mathrm{a} 32-\mathrm{a} 22 \mathrm{a} 31)-\mathrm{a} 23(\mathrm{a} 11 \mathrm{a} 32-\mathrm{a} 12 \mathrm{a} 31)+\mathrm{a} 33(\mathrm{a} 22 \mathrm{a} 11-\mathrm{a} 21 \mathrm{a} 12))
$$

The inverse matrix is:

```
( |a22 a23| --a12 a13| |a12 a13|)
( |a32 a33| |a32 a33| |a22 a23|)
( ) |a11 a12 a13 |
(- |a21 a23| |a11 a13| -|a11 a13|) / | a21 a22 a23|
( |a31 a33| |a31 a33| |a21 a23|) |a31 a32 a33|
( )
( |a21 a22| --a11 a12| |a11 a12|)
( |a31 a32| |a31 a32| |a21 a22|)
```

Sample

```
(234)(x) (20) |2 3 4| |2 3 4|
(369)(y)=(42) | | 6 9 | = 3x|1 2 3 | = 3x(36+36+28-32-42-27)=3x(100-101)=-3
(479)(z) (45) |479| |479|
```

($|69|-|34||34|)$
($|79||79||69|)$
() ($\left.\begin{array}{lll}-9 & 1 & 3\end{array}\right)$
$(-|39||24|-|24|)=\left(\begin{array}{lll}9 & 2 & -6\end{array}\right) /-3$
$(|49||49| \quad|39|) \quad\left(\begin{array}{ll}-3-23\end{array}\right)$
()
$\left(\begin{array}{ll}|36|-|23| & 2 \\ 3 & 3\end{array}\right)$
($|47||47||36|)$

$$
\begin{aligned}
& \text { z= }
\end{aligned}
$$

$$
\begin{aligned}
& \text { |a31 a32 a33| }
\end{aligned}
$$

Check:

$\left(\begin{array}{lll}-9 & 1 & 3\end{array}\right)\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)$	$(-18+3+12$	$-27+6+21$	$-36+9+27$)	$\left(\begin{array}{ll}1 & 0\end{array}\right)$
$1 /-3\left(\begin{array}{ll}9 & -6)\end{array}\left(\begin{array}{ll}6 & 9\end{array}\right)=\right.$	1/-3 (18+6-24	27+12-42	36+18-54)	$=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$
$(-3-23)(479)$	(-6 -6+12	$-9-12+21$	$-12-18+27)$	(0 0 1)

Solving the equation:

$$
\left.\begin{array}{cc}
(-9 & 1
\end{array} 3\right)(20) \quad(-180+42+135) \quad(-3) \quad(1)
$$

It is always important to use examples so that you can develop techniques for solving the problem and minimizing errors.

It we let $\mathrm{a} 13=\mathrm{a} 31=\mathrm{a} 23=\mathrm{a} 32=0$ and $\mathrm{a} 33=1$ we get the following inverse matrix:
$\left(\begin{array}{llll}\mid \mathrm{a} 22 & 0 \mid & -\mid \mathrm{a} 12 & 0 \mid \\ \text { |a12 } 0 \mid\end{array}\right)$
$\left(\begin{array}{ccc}\mid 0 & 1 \mid & \mid 0 \\ 1 \mid & \mid \mathrm{a} 22 & 0 \mid\end{array}\right)$

$$
\begin{aligned}
& \text { (a22-a12 0) } \\
& =\left(\begin{array}{lll}
-\mathrm{a} 21 & \mathrm{a} 11 & 0
\end{array}\right) \quad / \text { |a11 a12| } \\
& \left(\begin{array}{ccc}
0 & 0 & |\mathrm{a} 11 \mathrm{a} 12|
\end{array}\right) \quad|\mathrm{a} 21 \mathrm{a} 22| \\
& \text { |a21 a12|) }
\end{aligned}
$$

We get an answer consistent with that for the two by two inverse.

The 4×4 matrix

We are going to find the matrix and its inverse for the 4×4 matrix by using patterns that we observed from the $3 x 3$ matrix. The determinant from the four by four matrix has to be viewed differently because we can only generate 8 terms rather that the 24 that we need if we use the diagonal approach. Thus we use the expanded format testing the patterns that we saw from the 3×3.

$$
\begin{array}{r}
x+2 y+3 z+4 w=30 \\
2 x+3 y+4 z+w=24 \\
3 x+4 y+z+2 w=22 \\
4 x+y+2 z+3 w=24
\end{array}
$$

|1 234 |
$|2341|=1 x|341|-2 x|234|+3|234|-4 x|234|=1 x-36+-2 x-4+3 x 4+-4 x-44=160$

| \|3 412 | | 412 | 412 | 341 | 341 |
| :---: | :---: | :---: | :---: | :---: |
| \|4123| | 123 | 1231 | 123 | |

```
|30 23 4|
|24 \(341|=30 x| 341|-24 x| 234|+22 x| 234|-24 x| 234 \mid=30 x-36+-24 x-4+22 x 4+-24 x-44\)
```



```
    \(=160\)
```

|1 3034 |
|2 2441 |=-30x|2 $41|+24 x| 134|-22 x| 134|+24 x| 134 \mid=-30 x-4+24 x 4+-22 x-44+24 x-36$

$|42423| \quad|423| \quad|423| \quad|423| \quad|312|$
$=320$
|1230 4|
|2 3241 |=30x| 231 |-24x|1 24 4|+22x|1 24 4|-24x|1 24 |=30x4+-24x-44+22x-36+-24x-4

\|3 422 2		\| 342		\|3 42		\|231		\| 2311	
\|4 1243		\| 413		\|413		\|413		\|342	
$=480$									

|12330|

You can see that this was a lot of work, but with the organization and layout, we could solve it straightforwardly. The five by five matrix would be five times as much work.

When we analyzed the inverse for the 3×3 matrix, we found that starting with a positive sign in the upper left hand corner, we alternated signs in rows and columns which always assured that the sign of the diagonal element in each row was positive. We found the element for a cell by eliminating the row and column from the 4 x 4 determinant corresponding to the row and column of that element. However, the result of the operation was placed in the cell in which the row and column numbers of the element were interchanged. There were more patterns, but finding them is a task left to the reader.

Inverse matrix for $\mathbf{4 x} \mathbf{4}$

Testing with numbers

 -|3 1 12|||lll| |423||423||423||312|
|2 3 1|||1 24 ||1 $124||124|$

|4 1 3| | $4113 \mid$ |4 1 3| 3 |3 42 2|
|2 3 4||1123||123||123|

$\left|\begin{array}{rrrr}\mid-36 & 4 & 4 & 44 \\ \mid & 4 & 4 & 44 \\ \mid & -36 \\ 4 & 44 & -36 & 4 \mid \\ \mid 44 & -36 & 4 & 4\end{array}\right|$
$\left.\begin{array}{llll}\mid 1 & 2 & 3 & 4 \\ \mid 2 & 3 & 4 & 1 \\ \mid 3 & 4 & 1 & 2 \\ \mid 4 & 1 & 2 & 3 \mid\end{array} \right\rvert\,$

$$
\begin{aligned}
& \text { |a22 a23 a24| |a12 a13 a14| |a12 a13 a14| |a12 a13 a14| } \\
& \text { |a32 a33 a34| -|a32 a33 a34| |a22 a23 a24| -|a22 a23 a24 } \\
& \text { |a42 a43 a44| |a42 a43 a44| |a42 a43 a44| |a32 a33 a34| } \\
& \text { |a21 a23 a24| | a11 a13 a14| |a11 a13 a14| |a11 a13 a14| } \\
& \text {-|a31 a33 a34| |a31 a33 a34|-|a21 a23 a24| |a21 a23 a24| } \\
& \text { |a41 a43 a44| |a41 a43 a44| |a41 a43 a44| |a31 a33 a34| } \\
& \text { |a21 a22 a24| |a11 a12 a14| |a11 a12 a14| |a11 a12 a14| } \\
& \text { |a31 a32 a34| -|a31 a32 a34| |a21 a22 a24|-|a21 a22 a24| } \\
& \text { |a41 a42 a44| |a41 a42 a44| |a41 a42 a44| |a31 a32 a34| } \\
& \text { |a21 a22 a23| |a11 a12 a13| |a11 a12 a13| |a11 a12 a13| } \\
& \text {-|a31 a32 a33| |a31 a32 a33| -|a21 a22 a23| |a21 a22 a23| } \\
& \text { |a41 a42 a43| |a41 a42 a43| |a41 a42 a43| |a31 a32 a33| } \\
& \text { | a11 a12 a13 a14| } \\
& \text { | } \mathrm{a} 21 \mathrm{a} 22 \text { a23 a24| } \\
& \text { | a31 a32 a33 a34| } \\
& \text { | a41 a42 a43 a44| }
\end{aligned}
$$

	$\left(\begin{array}{llll}-9 & 1 & 1 & 11\end{array}\right)(30)$	$(-9 \times 30+24+22+11 \times 24)$	(40)	(1)
	$\left(\begin{array}{lllll}1 & 1 & 11 & -9\end{array}\right)(24)=$	$1 / 40 \times(30+24+11 \times 22-9 \times 24)=$	(80)	$=(2)$
1/40 x	$\left(\begin{array}{llll}1 & 11-9 & 1\end{array}\right)(22)$	$(30+11 \times 24-9 \times 22+24)$	$1 / 40 \times(120)$	(3)
	$\left(\begin{array}{llll}11 & -9 & 1 & 1\end{array}\right)(24)$	(11x30-9x24+22+24)	(160)	(4)

The use of the inverse matrix made the problem look easy, but there was a lot of work, errors, and correction that were needed to find it. If the same set of equations with different constants on the right of the equal sign were presented, then we could see the value of finding it. We found patterns that would have made it a lot easier to generate the matrix. We could use this technique to generate the inverse for the 5×5 with little work. When a task becomes this big, we can write a program using our knowledge of the patterns to make it sufficiently general to solve for the inverse of a matrix of any size.

