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One step beyond Number Structure 

Chapter V—Integral  Calculus 
 

 
A. Introduction 
 
Whereas differential calculus is concerned with the ratio of two quantities as changes in them 
approach zero, integral calculus focuses on the summation of small quantities as the number of 
quantities becomes infinitely large.  There is a geometric interpretation to the calculus: if you 
plot a continuous function as a curve on a Cartesian coordinate graph, the differential would be 
the tangent to the curve at the point of selection, while the integral is interpreted as the area be-
tween the curve and the x-axis. 
 
We used the logarithm to build up the base for the differential calculus.  Now we’ll use the ex-
ponential as our base for integration.  When I was taught integration I never fully understood 
that integration could be used to define functions (although not every integration can be trans-
lated into our small set of commonly used trigonometric and polynomial functions).  Once I re-
alized that the trigonometric functions could be represented by exponentials, and that I could 
define functions, I improved my understanding of number structure and could create tables for 
new and old functions.    
 
B. Integrations 
 
Let us look at the integration of  ex. 
             x                                   n                                  
             ∫ebx dx = lim               Σ e(bm Δx + ba) Δx                   Summation of a geometric series. 
             a            Δx →0               m=0 

   
                        =  lim  Δx eba(e((n+1) Δx) -1) / (ebΔx - 1)  =  (ebx – eba ) / b  
                                  Δx →0                                         

where nΔx + a = x 
 

Note: 
           (ebΔx - 1) / Δx  =  (1 + bΔx + (bΔx)2 / 2! + (bΔx)3 / 3! +  ...   -1) / Δx 
                                    =  b + b(bΔx) / 2! + b(bΔx)2 / 3! + ...       
                                    =  b  as Δx → 0.    
                x 
             ∫e bx dx  =  ebx / b -  eba / b 
                a   
 
A simpler integration is that of b:      ∫b dx 
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             x                                  n 
             ∫bdx  =  lim         b Σ Δx  =  lim bnΔx  =  b(x – a) 
 

                a            Δx →0        m=0                Δx →0 

 

               x 
            ∫ bdx  = b(x – a) 
               a 

 
C. Anti-differentiation 
 
Let us look at the integral of a differentiated function. 
 
             x                                   n                                                        
             ∫d f(x)/dx dx  =   Σ (f(a + mΔx) - f(a + (m – 1)Δx)) / Δx)  Δx  
             a                         m=1 
 

                                                     n 
                                    =   Σ (f(a + mΔx) - f(a + (m – 1)Δx) 
                                        m=1 
 
                                    =  f(a + nΔx) - f(a)  
 
                                    =  f(x) - f(a) 
 
By leaving out the limits of the integral, we introduce the concept of an indefinite integral. For 
example,  ∫d f(x) / dx dx  =  f(x) + c,  where  c  =  -f(a). 
 
Now let us look at the integration of a product.  In differential calculus we discovered that the 
derivative of a product was as follows: 
 
              d(f(u)g(z)) / dx  =  (df(u) / dx) g(z) + f(u) (dg(z) / dx)  
 
Let us integrate this expression: 
 
              ∫d(f(u) (g(z)) / dx) dx            =  ∫(df(u) / dx) g(z) dx +  ∫f(u) (dg(z) / dx) dx 
              ∫f(u) (dg(z) / dx) dx  =  ∫d(f(u) g(z)) / dx)dx -  ∫(df(u) / dx) g(z) dx 
                                                =  (f(u) g(z)) -  ∫(df(u) / dx) g(z) dx 
 

There is an implied constant that we can evaluate when we know the limits:  ∫xadx  
 
Let us try the product formula on the following: 
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            ∫xa dx   =  xax –  ∫xdxa  
 
                        =  xa + 1 – ∫ axxa-1dx  
 
                        =  xa + 1 –  ∫axadx        
 
  (a +1) ∫xadx  =  xa + 1                                  Adding   ∫axadx   to  ∫xadx. 
 

             ∫xadx   =  xa + 1/ (a + 1)                      Dividing by a + 1. 
 
D. Logarithms Revisited 
 
Logarithms play a very important part in solving a whole host of integration problems.  We only 
know that taking the logarithm is the inverse of exponentiation, but we do not yet have a power 
series with which to determine numerical values.  If we tried to evaluate 
 
                       ∫xa dx   =  x a + 1/ (a +1)   
 
for a = -1, we’d get: 
 

                     ∫x -1 dx   =  x-1 + 1/ (-1 +1)   
 
                                    =  1 / 0,           an indeterminate answer.  
 
Let us define the ln(y) as follows: 
 
                         ln(y)   =  ∫(1/y) dy 
 
And now let us substitute ya for y. 
 
                          ln ya  =  ∫1/ya dya  =  ∫(aya – 1) / y dy  =  a∫1/y dy  =  a ln y    
 
This result  is the same as the logarithm of an exponential. 
 
Let us try the logarithm of a product:              
 
                        ln (xy) =  ln (x) + ln(y)  =  ∫dx/x + dy/y  =  ∫(y dx + x dy)/ xy  =  ∫d(xy)/xy 
 
Let us try ey 

  
                        ln (ey ) =   ∫1/ey dey  =  ∫ey/ey dy  =  ∫dy  =  y 
 
Thus, ln y is the inverse of ey. 
 



-34- 

 

D
o N

ot copy “ O
ne Step B

eyond N
um

ber Structure” by Irvin M
. M

iller 
One step beyond Number Structure 

The logarithmic properties of exponentiation and multiplication are satisfied by this function.  
We have used integration to define a function, as contrasted to defining a function of multiple 
operations upon a known set of functions.  Let us see if we can develop a power series for this 
function.   
 
       ln(1 + y)   =  ∫d(ln(1 + y))  =  ∫dy / (1 + y) 
 
  ∫dy / (1 + y)   =  ∫(1 – y + y2 – y3 + y4+ ...)dy              (1 / (1 + y)  =  1 – y + y2 – y3 + …) 
 
                        =  y - y2 / 2 + y3 / 3 - y4 / 4 + ... 
 
Substituting x for 1 + y: 
 
               ln x  =  (x – 1)  -  (x – 1)2 / 2  +  (x – 1)3 / 3  -  (x – 1)4 / 4  + ...  for 1 < x < 2. 
    
To evaluate this expresion we substitute y for –y and subtract the one equation from the other.
             
            ln((1 + y) / (1 – y))  =  ln(1 + y)  -  ln(1 – y)  =  2(y + y3 / 3 + y5 / 5 + ... ) 
  
Now let us make some substitutions so that we can calculate the values of some logarithms:  
 
       y   =  1 / 5            ln ((6 / 5)  / (4 / 5) )  =  ln (3 / 2)  =  ln 3 – ln 2  =  a 
       y   =  1 / 7            ln ((8 / 7)  / (6 / 7) )  =  ln (4 / 3)  =  2 ln 2 – ln 3  =  b 
   ln 2  =  a + b 
   ln 3  =  2a + b 
       a   =  2 (1 / 5  +  1 / 1875 + 1 / 15625)  =   .40546510 
       b   =  2 (1 / 7  +  1 / 1029 + 1 / 84035)  =  .28768207 
   ln 2   =  .69314718053 
   ln 3  =  1.09861222863 
   ln 4  =  ln (2 x 2)  =  ln 2 + ln 2  =  2 ln 2 
   ln 5  =  1.60943785238 
   ln 6  =  ln (2 x 3)  =  ln 2 + ln 3  
   ln 7  =  1.94591014xxxx 
 ln 10  =  ln (2 x 5)  =  ln 2 + ln 5  =  2.30258503292 
 
Suppose we were interested in calculating the logarithms of the prime numbers.  Using the ratio 
 
          (1 + x) / (1 – x) 
 
we try different values for x that will allow us to calculate the logarithms of the prime numbers 
up to 19. 
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                x          (1+x)/(1-x) 
            1 / 7              8 / 6       =  4 / 3            =  2 x 2 / 3 
       a   1 / 17          18 / 16     =  9 / 8            =  3 x 3 / 2 x 2 x 2 
       b   1 / 19          20 / 18     =  10 / 9          =  5 x 2 / 3 x 3 
            1 / 23          24 / 22     =  12 / 11        =  2 x 2 x 3 / 11  
            1 / 25          26 / 24     =  13 / 12        =  13 / 2 x 2 x 3 
            1 / 27          28 / 26     =  14 / 13        =  2 x 7 / 13 
            1 / 29          30 / 28     =  15 / 14        =  3 x 5 / 2 x 7 
       c   1 / 31          32 / 30     =  16 / 15        =  2 x 2 x 2 x 2 / 3 x 5 
            1 / 33          34 / 32     =  17 / 16        =  17 / 2 x 2 x 2 x 2 
            1 / 37          38 / 36     =  19 / 18        =  19 / 2 x 3 x 3 
 
       a   =  2 ln 3  –  3 ln 2  
       b   =  ln 5 + ln 2  –  2 ln 3 
       c   =  4 ln 2  –  ln 3  -  ln 5 
 
   ln 2  =  3a  +  2(b + c) 
   ln 3  =  5a  +  3(b + c) 
   ln 5  =  7a  +  5b  +  4c 
   
The logarithms (to the base “e”) of the number from 1 to 10 are as follows: 
 
            ln 1     =  0 
            ln 2     =  .69314718053 
            ln 3     =  1.09861222863 
            ln 4     =  2 ln 2 
            ln 5     =  1.60943785238 
            ln 6     =  ln 2 + ln 3  
            ln 7     =  1.94591014xxxx 
            ln 8     =  3 ln 2 
            ln 9     =  2 ln 3 
            ln 10   =  ln 2  +  log 5  =  2.30258503292 
 
            Log 2  =  .69314718053 / 2.30258503292  =  .30103. 
 
In other words, integration allows us to define the properties of a function and gives us a way to 
calculate numerical values.  The functions ex and ln x are inverses of one another, just as differ-
entiation and integration are inverse functional operations of one another.  It was through a dif-
ferentiation process that we could determine the value of “e” and through an integration process 
that we could evaluate the logarithmic function. 
 
Let us see if the power series solution works with complex numbers. 
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            ln (1 + y)  =  ∫(1 / (1 + y)) dy  =  ∫(1 / y – 1 / y2 + 1 / y3 – 1 / y4 + )dy 
 
            ln (1 + y) - ln y  =  ln (1 + 1 / y)  =  1 / y – 1 / 2y2 + 1 / 3y3 – 1 / 4y4 + 1 / 5y5 

 

Substituting x for 1 / y we get the same series for the ln as with the other approach: 
 
            ln (1 + x)  =  x – x2 / 2 + x3 / 3 – x4 / 4 
 
Let x  =  i / 31/2.  Then   
 
            ln (1 + i/31/2)  =  i(31/2 / 2) (1 – 1/ (3 x 31)+  1/ (5 x 32 ) - 1 / (7 x 33 ) + 1 / (9 x 34 )+ ... ) 
                                       + 1 / (2 x 3)  –  1 /( 4 x 32 ) +  1/(6 x 33 ) -  1/(8 x 34 )+  1/(10 x 35 )+... 
 
Since  iπ / 6                =  ln(31/2 / 2 + i / 2 )  =  ln(1+ i / 31/2)  +  ln (31/2 / 2)  
 
then π/6                       =  (31/2 / 2) (1 – 1 /(3 x 31) + 1 / (5 x 32 ) - 1 / (7 x 33) +  1 / (9 x 34 )+ ... ) 
 
and ln 2 – (ln 3) / 2     =  (1/ (2 x 3) – 1/ (4 x 32 ) + 1/ (6 x 33 ) - 1 / (8 x 34  ) + 1/ (10 x 35)+ ... ). 
 
Performing the calculations validates the formulations.  This exercise was done to convince us 
that the expansion series obeys the same rules as the function it defines. 
 
E. Calculating π 
 
Let us use integration to evaluate π more accurately than we’re previously done: 
 
        arcsin x   =  ∫(1 – x2 )-1/2 dx 
                        =  ∫(1 + x 2 / 2 + 3x4 / 23 + 5x6 / 24 + 5 x 7 x8 / 27 + ... )dx 
                        =  x(1 + (2 / 3)(x / 2)2+(2x 3/5) (x /2)4+(4 x 5 / 7 )(x / 2)6+(5x 7 / 9) (x / 2)8 + ... 
 

     arcsin 1/2   =  π / 6  
                  π    =  3(1  +  1 / (3 x 23)  +  3 / (5 x 27)  +  5 / (7 x 210)  +  5 x 7 / 9 (215) + ... 
                        =  3.1415 
 
This gives us a faster approach to calculating pi than the sum of the reciprocal squares. 
 
F. Integration Techniques 
 
We do not want arbitrarily to define a new function when we have difficulty performing an in-
tegration.  There are several techniques we could employ.  These include partial fractions, trigo-
nometric substitutions, and  “integration by parts.” 
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Consider the following integral: 
 
                     ∫dx / (1 + x2) 
 
Our first approach is to solve it by partial fractions: 
                                                                                                             
            ∫dx / (1 + x2)   =  ½ ∫(1 / (1 – xi) + 1 / (1 + xi))dx  
 

                                    =  -i / 2 (ln(1 + xi) - ln(1 – xi))  
 

                                    =  i / 2 ln((1 – xi) / (1 + xi))  
 
If  sin(y)  =  x / (1 + x2)1/2, then  tan(y) = x. 
 

        (i/2) ln((1 – xi)/(1 + xi))  =  (i/2) (ln(e-i arctan(x)) – ln( ei arctan(x))) 
                                                =  arctan(x) 
                         ∫dx / (1 + x2)  =  arctan(x) 
 
Let us use a trigonometric substitution: 
 

                                           x   =  tan(y) 
                                         dx   =  dy / cos2(y) 
                         ∫dx / (1 + x2)   =  dy /((cos2(y))(1 + tan2(y)))  =  ∫dy  
                                                =  y  
                                                =  arctan(x) 
 
G. Calculating Length 
 
The length of an arc is the sum of an infinite number of infinitesimal lengths:  
 
            L         =  Σ (Δx2 + Δy2)1/2 
 

                        =  ∫(1 + (dy/dx)2)1/2 dx.  
 
Let us find the length of a semicircle.  The equation of a circle is: 
 

            y          =  (r2 – x2)1/2.    
 

            dy/dx   =  -x / (r2 – x2)1/2   
 
Then the length is: 
                     r                                           r                                                                                          
                     ∫(1 + x2 / (r2 – x2))1/2dx   =  r∫dx / (r2 – x2)1/2 
                    -r                                                   -r                                                                                                       
                                                            =  r(sin-1(x / r))|r–r     
 

                                                            =   r(π / 2 – -π / 2)    
                                                            =   πr 

 
 
 
                             r 

                     
 (1+ x2)1/2        x 
            y 
               
              1 
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H. Summary 
 

          x 
          ∫ebx dx  =  eb x / b -  eba / b 
         a   
 
           x 
           ∫ b dx   =  b(x – a) 
           a 
 
          x 
          ∫ xa dx   =  x a + 1/ (a + 1) 
          0 
 
           x 
            ∫dx/x   =  ln(x) 
           1 
 
The length of an arc  =  ∫(1 + (dy/dx)2)1/2 dx. 
 
I. Practice 
 
1.  Show that  ∫x (x + 1)1/2 dx  = ((6x – 4) (x + 1)3/2) / 15. 

 
2.  Show  ∫ln(x)dx  =  x (ln(x) - 1).   

 
3.  Show  ∫tanx  =  -ln(cos(x)). 

 
4.  Show ∫sec(x) dx  =  ln(sec(x) + tan(x)). 

 
5.  Show ∫arcsin(x) dx  =  x arcsin(x) + (1 - x2)1/2. 

 
6.  Show ∫(1 – cos(x))1/2 dx  =  -2√2 cos(x/2). 
 
               ∞                   ∞ 
7. Show  ∫x-texdx  =  t ∫ x -t-1ex dx 
              0                   0 

   




