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One step beyond Number Structure 

Chapter I—A Very Special Function 
 
 
A. Introduction 
 
The exponential function is the key that ties many of the topics of advanced mathematics to-
gether. Mathematics progresses from addition to multiplication and then to exponentiation.  
While the first two of those operations are commutative, exponentiation is not.  With addition 
we discovered negative numbers; with multiplication, fractions; and with exponentials, complex 
numbers.  With this knowledge we were able to define the general form of any number as 
 
                                     Ae2π ni + ix      

 
where A and x are any rational or irrational numbers and n is any integer from –∞  to ∞.  
Because this information is so important, we are going to derive it. 
 
Let us look at the expression (1 + y)n, where y is any number and n is any integer. We’ll use 
three examples, where n is, in turn, 2, 3, and 4:  
 
n=1:    1 + y               n=2:     1 + 2y + y2                             n=3:     1 + 3y + 3y2 + y3 
            1 + y                            1 + y  ___                                          1 +  y__________ 
            1 + y                            1 + 2y + y2                                         1 + 3y + 3y2 + y3 
                  y + y2_                           y + 2y2 + y3                                ____y + 3y2 + 3y3 + y4        
            1 + 2y + y2                   1 + 3y + 3y2 + y3                               1 + 4y + 6y2 + 4y3 + y4 
 
We see the pattern of Pascal’s Triangle from the coefficients: 
                              n     
                              1                    1  1                                                  1  1 
                              2                  1  2  1                                                1  2   1 
                              3                1  3   3  1                     or                    1  3   3   1 
                              4             1  4   6   4  1                                           1  4   6   4  1 
                              5           1  5 10 10  5  1                                         1  5 10 10  5  1 
 
We use the notation P(n) to mean the number of permutations of n things—the number of ways 
we can arrange or sequence those things.  That number is n! (read as “n factorial”).  Suppose, 
though, we want only a subset of m things from that set of n things.  We denote the number of 
possible such subsets—the number of combinations of n things taken m at a time—as C(m,n).   
That number is n! / [(m!)(n – m)!].  The order of things within each combination is immaterial.  
If the order did matter, we would have the number of permutations of n things taken m at a 
time, which we would denote as P(m,n), and which would equal  
 

            n(n – 1)(n – 2) … (n – m + 1) 
 

or n! / (n – m)!. 
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Let us look at the values of P(m,n) when n = 4 and m is, respectively, 1 or 2 or 3: 
 

       P(1,4)  =  4! / (3!)  =  4;   P(2,4)  =  4! / (2!)  =  12;   and  P(3,4)  =  4! / (1!)  =  24. 
 

If 0! = 1 then          P(0,4)  =  4! / (4!)  =  1   and   P(4,4)  =  4! / (0!)  =  24. 
 

So, the values of P(m,4) as m goes from 0 to 4 are, respectively, 1, 4, 12, 4, and 24. 
 
B. Symmetry of the Combinatorials 
 

At first it might seem as though someone with great insight had accidentally found a function 
that predicted or explained the coefficients in the binomial expansion.  If we look at each coef-
ficient of ym we could use the selection of m things from n to explain it.  Another possibility 
could be that because each term is formed by adding the coefficient directly above it to the one 
to the left of the one above it, then only the function C(m,n) satisfies this constraint.   
 

Let us now look at a definition of C(n) that can explain why 0! = 1, and later why C(m,n) = 0 if 
we were to imagine a case where m was greater than n. 
 
First, let us define   1 / C(n – 1)  =  n / C(n),  where  C(1)  =  1. 
 

Then, for n = 1,   1 / C(0)  =  1 / C(1)  =  1 / 1  =  1. 
 

Therefore C(0) = 1. 
 

We notice that there is a symmetry between C[(n – m),n] and C(m,n): 
 

            C[(n – m),n]   =   n! / ( (n – m)!(n – (n – m))!)   =   n! / (((n – m)!)(m!))   =   C(m,n). 
 

Let us quickly check that this formula is valid for the examples we’ve looked at. 
 

            C(0,2)  =  C(2,2)  =  2! / (0!)(2!)  =  1 
            C(1,2)  =  2! / (1!)(1!)  =  2 
            C(0,3)  =  C(3,3)  =  3! / (0!)(3!)  =  1 
            C(1,3)  =  C(2,3)  =  3! / (1!)(2!)  =  3 
            C(0,4)  =  C(4,4)  =  4! / (0!)(4!)  =  1 
            C(1,4)  =  C(3,4)  =  4! / (1!)(3!)  =  4 
            C(2,4)  =  4! / (2!)(2!)  =  6 
We can generalize the binomial expansion by using a summation series: 
                              n 
            (1 + y)n = Σ C(m,n)(ym) 
                            m=0   
As we become familiar with a mathematical shorthand we are able to grasp concepts expressed 
in that notation much more easily. 
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One step beyond Number Structure 

C. Range of the Combinatorials 
 
With our definition of C(n), we found that 0!  =  C(0)  = 1.  What happens mathematically when 
n is less than 0, that is, when we have a negative number of things to group into combinations? 
 
                   1 / C(-1)   =   0 / C(0)      =   0. 
                   1 / C(-2)   =   -1 / C(-1)   =   (-1)(0)   =   0. 
                   1 / C(-3)   =   -2 / C(-2)   =   (-2)(-1 / C(-1))   =   (2!)(0)   =   0. 
 

We can then see that 
 

            C(n + 1,n)   =   C(n) / [(C(n + 1)][C(n – (n + 1))]   =   C(n) / ([C(n + 1)][C(-1)])   =   0. 
 
Therefore, if m > n, then  C(m,n)  =  0.  
 
Because C(m,n)  =  C(n) / (C(n – m) C(m)), for m = -m, we get 
 
                    C(-m,n)   =   C(n) / C(n + m) C(-m)  
                                    =   (C(n) / C(n + m))[1 / C(-m)]   
                                    =   (C(n) / C(n + m))(0)  
                                    =   0.  
 
Therefore, if m < 0, then  C(m,n)  =  0, and from above, for m > n,  C(m,n)  =  0. 
 
D. Pascal’s Triangle 
 
In Pascal’s triangle we observed that each element is formed by the sum of certain elements 
above it.  We would like to show that our definition of C(m,n) follows this rule. 
 
        C(m,n)  +  C(m + 1,n)   =   n! / (m! (n – m)!) + n! / ((m + 1)! (n – m-1)!)                    
                                                =   (n! / ((m + 1)!(n – m)!)) x (m + 1 + n – m) 
                                                =   (n + 1)! / ((m + 1)! (n + 1 – m – 1)!)  
                                                =   C(m + 1,n + 1) 
 
 
At the right we have reformated                                n/m |  0   1   2   3   4   5 
the Pascal Triangle as a right                                       0    |  1   0   0   0   0   0 
triangle.                                                                        1    |  1   1   0   0   0   0           
                                                                                      2    |  1   2   1   0   0   0 
                                                                                      3    |  1   3   3   1   0   0 
                                                                                      4    |  1   4    6   4  1   0 
                                                                                      5    |  1   5  10 10  5   1     
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E. Sum of the Combinatorials 
 
By looking at the combinatorials with different mathematical tools we can find some relation-
ships that are interesting.  Consider the following: 
                               n 
            (1 + y) n  =  Σ C(m,n)(ym) 
                             m=0   
                                                 n 

For example, if  y = 1, then    Σ C(m,n)  =  2n 
                                                                      m=0 
                  2n                               n 
            Σ C(p,2n)  =  Σ (C(2p,2n) + C(2p+1,2n))  =  22n       
            p=0                          p=0 
 
Because C(2n+1,2n)  =  0   (because  2n+1 > 2n),        
and C(2p,2n)  =  C(2p-1,2n–1)  +  C(2p,2n–1)   (sum of terms above), 
we have 
             n                                     n                                                                            2n 
            Σ   C(2p,2n)  =  Σ C(2p-1,2n-1)  +  C(2p,2n-1) =  Σ C(p,2n-1)  =  2(2n –1). 
            p=0                                p=0                                                                          p=0 
 
And because C(-1,2n-1)  =   C(2n,2n-1) = 0     for n > 0,  we have 
 
              n                          2n                             n 

             Σ C(2p+1,2n) =   Σ C(p,2n)  -  Σ C(2p,2n)  =   22n – 2(2n-1)  =  2(2n-1)  x  (2 –1)  =  2(2n-1).   
               p=0                              p=0                      p=0   

              odd terms        =   all terms  -  even terms 
 
Then, for odd terms (with n > 0) 
                                  n                                                                           n –1          
            (1 / (2n)! ) x Σ C(2p + 1,2n)   =   2(2n-1)  / (2n!)   =  Σ 1 / ((2n – 2m – 1)!(2m + 1)!)  
                                        p= 0                                                                        m=0 

 
and for even terms (again, with n > 0) 
                                   n                                                                          n  
            (1 / (2n)! ) x  Σ C(2p,2n)      =   2(2n-1)  / (2n!)   =  Σ 1 / ((2n – 2m)!(2m)!)   
                                 p=0                                                                      m=0    

Consider the cases for n = 3: 
 
         1 / (6!)(0!)  + 1 / (4!)(2!) + 1 / (2!)(4!) + 1 / (0!)(6!)  =  (½)(26) / 6!  =  25 / 6!  =  32 / 720.  

         1 / (5!)(1!) + 1 / (3!)(3!) + 1 / (1!)(5!)   =   (½)(26) / 6!  =  25 / 6!  =  32 / 720. 
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One step beyond Number Structure 

Let us see if it is true: 
 
            1 / (6!)(0!)  + 1 / (4!)(2!) + 1 / (2!)(4!) + 1 / (0!)(6!)         =  1 / 720 + 1 / 48 + 1 / 48 + 1 / 720  
                                                                                                        =  (1 + 15 + 15 + 1) / 720   
                                                                                                        =  32 / 720 
 
             1 / (5!)(1!) + 1 / (3!)(3!) + 1 / (1!)(5!)                               =  1 / 120 + 1 / 36 + 1 / 120  
                                                                                                        =  (6 + 20 + 6) / 720   
                                                                                                        =  32 / 720 
 
One of the great satisfactions in mathematics occurs when an algebraic derivation is validated 
by the substitution of numerical values.  At this stage, this formulation is a mere mathematical 
curiosity, but later we will see why this formulation for summing up the alternate coefficients of 
the binomial expansion is so interesting.           
   
F. Determining the Transcendental Number “e”  
 
Let us go back to the binomial expansion. 
 
            (1 + a)b  =  1 + (b / 1!)(a)  +  [b(b – 1) / 2!](a2)   +  [b(b – 1)(b – 2) / 3!](a3)  + ... 
 
Let us substitute some new variables for the values of a and b.  Let a = 1 / n  and  b = nx. 
 
Then    ((1 + 1/ n)nx)   =  ((1 + 1/n)n)x  
 
         (1 + a) b  =  1 + nx / n + ((nx)(nx –1)) / ((n2)(2!))  +  ((nx)(nx –1)(nx – 2)) / ((n3)(3!))  + ...  
                        =  1 + x + (x(x – 1/n)) / 2!  +  (x(x – 1/n)(x – 2/n)) / 3!  + ...  
 
As n gets very, very large  (we say “as n → ∞”): 
 
       e   =  (1 + 1 / n)n  =  (1 + 1 / ∞)∞ 
 
       ex   =  (1 + a)b          =  1 + x  +  x2 / 2!  +  x3 / 3!  + ...     
 
We can determine properties of the cosine and sine functions by substituting  iy for x: 
 
   e(iy)  =  (1  –  y2 / 2!  +  y4 / 4! + ...)  +  i(y - y3 / 3!  +  y5 / 5! - ... )  
            =  c(y) + i  s(y),                      where i2 = -1. 
 
We can rewrite e(y), s(y),  and c(y) as follows: 
                 ∞ 
   e(y)  =     Σ (ym) / C(m) 
                  m=0 
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∞ 

   s(y)  =    Σ (-1)m (y (2m + 1)) / C(2m + 1)                s(-y)  =  -s(y)  
                 m=0 

                 ∞ 
   c(y)   =  Σ (-1)m (y (2m)) / C(2m)                             c(-y)  =  c(y) 
               m=0    
 
Now let us look at [s(y)][s(y)] as follows: 
                            ∞              p          
[s(y)][s(y)]  =  Σ (-1)p Σ (1 / ([C(2p-2m-1)][C(2m+1)]))y2p 
                       p=1       m=0 

You actually have to expand the first few terms of the product before you can see the pattern 
that leads to the above formula.  We recognize the sum of the reciprocal factorial products from 
the previous section and make the appropriate substitutions: 
                       ∞                                                   ∞  
                  =  Σ (-1)(p+1) [2 (2p-1)/(2p)!][y2p]  =  Σ(-1)p+1(½)(2y)2p / (2p)! 
                     p=1                                                 p=1     
 
Now let us look at [c(y)][c(y)]: 
                                       ∞          p           
   [c(y)][c(y)]  =  1 + Σ(-1)p  Σ (1 / (C(2p – 2m)[C(2m)]))y2p 
                                  p=1       m=0         
 

                                   ∞                                                  
                        =  1 + Σ(–1)p [2(2p-1) / (2p)!][y2p]  
                                 p=1 

                                   ∞                                                  
                        =  1 + Σ (-1)p [½](2y)2p/ 2p! 
                                  p=1                      
Looking at these two products [s(y)][s(y)] and [c(y)][c(y)]  we see the following relationships: 
 
    [c(y)][c(y)]  =  ½ + c(2y) / 2         
              c(2y)  =  2[c(y)][c(y)] - 1 
 
    [c(y)][c(y)] + [s(y)][s(y)]  = 1 
 
From trigonometry we will learn that cos(2y)  =  2cos2(y) -1 and that cos2(y) + sin2(y)  =  1. 
 
Thus, c(y) has the same properties as cos(y), and s(y) has the same properties as sin(y).  We de-
rived these properties from algebraic operations on the power series.  Now let us work with the 
functions themselves: 
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          eia x eib   =   ei(a+b)  

                        =   cos(a + b)  +  i(sin(a + b))   
                        =   (cos(a)  +  i(sin(a)))(cos(b)  +  i(sin(b))) 
 
      cos(a + b)  =   cos(a)cos(b)  -  sin(a)sin(b)                       Equating the real parts. 
      sin(a + b)  =   sin(a)cos(b)  +  cos(a)sin(b)                      Equating the coefficients of i. 
 
Remembering that sin(-a)  =  -sin(a)  and  cos(-a)  =  cos(a), we have 
 
      cos(a – b)   =  cos(a)cos(b)  +  sin(a)sin(b) 
      sin(a – b)  =  sin(a)cos(b)  –  cos(a)sin(b) 
 
Let us look at the following: 
 
        (eia)(e-ia)   =  e0 = 1  
                        =  [cos(a)  +  i(sin(a))][cos(a)  +  i(sin(a))]  
                        =  cos2(a)  +  sin2(a) 
 
Because    cos(a + b)  =  cos(a)cos(b) - sin(a)sin(b), if we substitute b = a, we get: 
                 cos(2a)       =  cos2(a) - sin2(a)  
                                    =  2cos2(a) - 1 
 
These are the same formulae that we got from using the power series.  This reconfirms our con-
fidence in the consistency of the formulations.   
 
Could these functions be periodic or modular in that they have the same values as “a” gets big-
ger and bigger?  We know from the formula that  
 
            sin(0)  =  0  and  cos(0)  =  1.  
 
Since cos2(a) + sin2(a) = 1, there must be some value for “a” such that cos(p) = 0 and sin(p) = 1. 
 
Because    cos(a – b)  =  cos(a)cos(b) + sin(a)sin(b) 
and       
                 sin((a – b)  =  sin(a)cos(b) – cos(a)sin(b), 
 
if we substitute p for a, we get 
 
            cos(p – b)  =  cos(p)cos(b) + sin(p)sin(b)  =  (0)cos(b) + (1)sin(b)  =  sin(b) 
and 
            sin(p – b)  =  sin(p)cos(b) – cos(p)sin(b) =  (1)cos(b) - (0)sin(b)  =  cos(b).  
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Since cos(2b)  =  2cos(b)cos(b)  - 1 
          cos(2p)  =  -1   and   sin(2p)  =  0 
          cos(4p)  =  2cos(2p)cos(2p) - 1  =  1   and    sin(4p)  =  0 
          cos(3p)  =  cos(2p)cos(p) - sin(2p)sin(p)  =  (-1)(0)  –  (0)(1)  =  0 
          sin(3p)  =  sin(2p)cos(p) + cos(2p)sin(p)  =  (0)(1)  +  (-1)(1)  =  -1. 
 
Let us make a table: 
 
 
 
 
 
 
 
 
 
Thus, the sine and cosine functions have periods of 4p and half periods of 2p = π.  These would 
be roots of a large polynomial, so we could write the sine series as a product series.  We used a 
square term because the sine is periodically symmetrical about 0.  That is, sin(-x)  =  -sin(x). 
                   ∞ 
    s(y)  =  yΠ (1- ( y / (nπ))2) 
                  n=0              
 

            =  y  –  (y3)(π-2)(1 + 1/4 + 1/9 + 1/16 + … ) + ... 

            =  y –  y3/ 3! + ... 

 

Equating the coefficients of y3, we get  π2 =  (6)(1 + 1/4 + 1/9 + ...).  Though this will give us 
an estimate of pi (π), it will take many calculations to obtain even a few significant digits. 
 
Starting with the binomial expansion, we were able to discover e and π, two irrational or in 
these cases, transcendental numbers.  Neither can be represented as the ratio of two integers.  
Mathematicians do not proceed in such a well-directed approach to discovery.  Usually there are 
lots of false starts taken before we find a fruitful path.  Much is based on trying to create and 
find patterns.  We try looking at problems in different ways to insure mathematical consistency. 
 
Because of the periodic nature of eiy, we find that we can write any number as:    
 
            Ae2πni + ix  =  ea+2πni + ix, where ea  = A. 
 
G. Numerical Evaluation of e 
 
Learning how to determine the values of irrational numbers is important so that you can de-
velop a better number sense and can practice mathematical manipulation and organization. 
 
            ey  =  1  +  y  +  y2 / 2!  +  y3 / 3!  +  y4 / 4! + ... 

a sin a  cos a 

0 0 1 

p 1 0 

2p 0 -1 

3p -1 0 

4p 0 1 
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Then for  y = 1,   e1 = e =  1 + 1 + 1/2 + 1/6 + 1/24 + ... 
 
Each number is obtained by dividing the previous number by the next counting number, so we 
can calculate “e” by successive approximations as follows: 
 
e =     1.000000000 
        +1.000000000          
        +0.500000000         previous line divided by 2 
        +0.166666666         previous line divided by 3 
        +0.041666666         previous line divided by 4 
        +0.008333333         previous line divided by 5 
        +0.001388888        etc. 
        +0.000198412 
        +0.000024801 
        +0.000002755 
        +0.000000275        
          2.718281726          
 
With “e” we are fortunate that the series converges rapidly so that we do not have to do many 
calculations.  Let us determine e.5: 
 
     e.5   =  1 + 1 / 2  +  1 / (4 x 2!)  +  1 / (8 x 3!)  +  ...  
 

            =  1.64872170687 
 
Then  e.5 x  e.5  =  e1  =  e  =  1.6487217 x 1.6487217  =   2.718281... 
 
The rules for exponentiation hold for the values calculated from this series. 
 
H. Practice 
 
1. Calculate:    
 
            a.  5!     
 
            b.  6! / (4!)(2!)    
 
            c.  (-6!) / ((-4!)(21!))    
 
2. Calculate:  (a + b)6 
 
3. Find the Pascal coefficients for (a + b)7. 
 
4. Calculate e to the tenth decimal place. 
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5. Find the sum of the 11th row of the following: 
 
              1)           3  5     
              2)        3   8   5 
              3)      3 11 13  5         
              4)      … 
            … 
            11) __ __ __ __ __ __ __ __ __ __ __ __      Sum = ________ 




